Water and Sediment Quality in the Bayswater Brook Catchment

2020 – 2021 monitoring report

Prepared for City of Bayswater

By Urbaqua

February 2023

Disclaimer and Limitation

This document is published in accordance with and subject to an agreement between Urbaqua and the Client, City of Bayswater, for who it has been prepared for their exclusive use. It has been prepared using the standard of skill and care ordinarily exercised by environmental professionals in the preparation of such Documents.

This report is a qualitative assessment only, based on the scope of services defined by the Client, budgetary and time constraints imposed by the Client, the information supplied by the Client (and its agents), and the method consistent with the preceding. Urbaqua has not attempted to verify the accuracy or completeness of the information supplied.

Any person or organisation that relies upon or uses the document for purposes or reasons other than those agreed by Urbaqua and the Client without first obtaining the prior written consent of Urbaqua, does so entirely at their own risk and Urbaqua, denies all liability in tort, contract or otherwise for any loss, damage or injury of any kind whatsoever (whether in negligence or otherwise) that may be suffered as a consequence of relying on this Document for any purpose other than that agreed with the Client.

Copying of this report or parts of this report is not permitted without the authorisation of the Client or Urbaqua.

CONTENTS

Executive Sumn	nary	i
Recommer	ndations	i
Summary re	esults – Physiochemical	ii
Summary re	esults – Nutrients	iii
Summary re	esults – Metals in water	iv
Summary re	esults – Metals in sediment	iv
Summary R	esults – Sites of concern	v
1 Introduction	n	11
	yswater Brook	
1.1.2 Wo	ater Quality Monitoring Program	11
1.2 Purpose	of this report	11
	gy	
	g method	
2.2 Site sele	ection	12
	ing frequency	
2.3.1 Mc	onitoring Status – 2020-2021	16
2.3.2 Mis	ssed samples	16
2.4 Water a	Ind sediment quality parameters	16
2.4.1 In s	situ water samples	16
2.4.2 Wo	ater and sediment samples for laboratory analysis	16
2.5 Quality	assurance and quality control measures	18
2.6 Guidelir	ne values and toxicant trigger values	18
3 Results		19
3.1 Rainfall		19
3.2 Field red	cord	20
3.3 Physico-	-chemical	21
3.3.1 pH		21
3.3.2 Ele	ctrical Conductivity (EC)	25
3.3.3 Dis	solved oxygen saturation (DO)	28
3.3.4 Tot	al Suspended Solids (TSS)	31
3.4 Nutrient	s in Water	35
3.4.1 Tot	al Nitrogen (TN)	35
3.4.2 Tot	tal Oxidised Nitrogen (NOx)	38
	rogen as ammonia/ammonium (NH _x .N)	
	al Phosphorus (TP)	
	uble Reactive Phosphorus (SRP)	
	n Water	
	uminium (AI)	
	iromium	
	pper	
	ad	
	skel	
	кеі С	
	n Sediment	
	uminium (Al)	
	romium	
	pper	
3.6.4 Leo	ad	/4

	3.6.5	Nickel	
	3.6.6	Zinc	6
4	Environr	nental Health Assessment7	7
5	Discussio	on7	7
5	.1 Phys	io-chemical7	7
5	.2 Nutri	ents	С
5	.3 Meto	als8	3
6	Recomr	nendations	8
7	Referen	ces	
A	ppendix		2
A	ppendix		3
A	Appendix	C Environmental Health Report	4
A	ppendix	D DWER Pollution Response	5

Figures

Executive Figure 1 - Physico-chemical Exceedances Summary 2020-2021	/iii
Executive Figure 2 - Nutrient Exceedances Summary 2020-2021	ix
Executive Figure 3 - Metals Exceedances Summary 2020-2021	. x

Figure 1: Sampling locations	5
(station ref. 9225) (BoM, 2022)	9
Figure 3: pH recorded at Bayswater Brook surface sampling sites 2020	
Figure 4: pH recorded at Bayswater Brook surface sampling sites 2021	
Figure 5: Median pH recorded at Bayswater Brook 2020-2021	
Figure 6: Electrical conductivity recorded at Bayswater Brook surface water sampling sites 2020	
Figure 7: Electrical conductivity recorded at Bayswater Brook surface water sampling sites 202	1
	26
Figure 8: Median electrical conductivity (2020-2021)	27
Figure 9: Dissolved oxygen saturation recorded at Bayswater Brook surface water sampling site	s:
2020	28
Figure 10: Dissolved oxygen saturation recorded at Bayswater Brook surface water sampling	
sites 2021	
Figure 11: Median dissolved oxygen saturation (2020-2021)	30
Figure 12: Total suspended solids concentration recorded at Bayswater Brook surface water	
sampling sites in 2020	31
Figure 13: Total suspended solids concentration recorded at Bayswater Brook surface water	
sampling sites in 2021	
Figure 14: Median Total Suspended Solids (2020-2021)	34
Figure 15: Total Nitrogen concentration recorded at Bayswater Brook surface water sampling	
sites 2020	5
Figure 16: Total Nitrogen concentration recorded at Bayswater Brook surface water sampling	o /
sites 2021	
)/

Figure 18: Total oxidised nitrogen concentration recorded at Bayswater Brook surface water
sampling sites 2020
Figure 19: Total oxidised nitrogen concentration recorded at Bayswater Brook surface water sampling sites 2021
Figure 20: Ammonia/ammonium concentration recorded at Bayswater Brook surface water
sampling sites 2020
Figure 21: Ammonia/ammonium concentration recorded at Bayswater Brook surface water
sampling sites 2021
Figure 22: Total phosphorus concentration recorded at Bayswater Brook surface water
sampling sites 2020
Figure 23: Total phosphorus concentration recorded at Bayswater Brook surface water
sampling sites 2020
Figure 24: Total phosphorus concentration recorded at Bayswater Brook surface water
sampling sites 2021 (enlarged – scale ends at 0.2)
Figure 25: Median total phosphorus concentration (2020-2021)
Figure 26: Soluble reactive phosphorus concentration recorded at Bayswater Brook surface
46
Figure 27: Soluble reactive phosphorus concentration recorded at Bayswater Brook surface
47
Figure 28: Soluble aluminium concentration recorded at Bayswater Brook surface water
sampling sites 2020
Figure 29: Soluble aluminium concentration recorded at Bayswater Brook surface water
sampling sites 2021
Figure 30: Median soluble aluminium concentrations (2020-2021)
Figure 31: Soluble chromium concentration recorded at Bayswater Brook surface water
sampling sites 2020
Figure 32: Soluble chromium concentration recorded at Bayswater Brook surface water
sampling sites 2021
Figure 33: Median soluble chromium (Cr) concentration (2020-2021)
Figure 33: Median soluble chromium (Cr) concentration (2020-2021)
Figure 33: Median soluble chromium (Cr) concentration (2020-2021)
Figure 33: Median soluble chromium (Cr) concentration (2020-2021)
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 sites 2021 58
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 59
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 62
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 58 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 59 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 62 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 65
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 52 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 52 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 54 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 54 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 55 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 64 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 55
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 58 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 59 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 65 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 66
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 62 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 65 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 62 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 65 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 58 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 62 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 65 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 64 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 65 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 61 Figure 39: Soluble lead concentration recorded at Bayswater Brook surface water sampling 62 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 64 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 65 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 66 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 68 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling <
Figure 33: Median soluble chromium (Cr) concentration (2020-2021)
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 52 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 52 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 54 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 64 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 55 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 56 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 56 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 56 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 57 Figure 44: Median soluble zinc (Zn) concentrations (2020-2021) 68 <
Figure 33: Median soluble chromium (Cr) concentration (2020-2021)
Figure 33: Median soluble chromium (Cr) concentration (2020-2021) 55 Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling 57 Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling 58 Figure 36: Median soluble copper (Cu) concentration (2020-2021) 59 Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling 51 Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling 52 Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 52 Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling 54 Figure 41: Median soluble nickel (Ni) concentration (2020-2021) 64 Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 55 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 56 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 56 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 56 Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling 57 Figure 44: Median soluble zinc (Zn) concentrations (2020-2021) 68 <

Figure 48: Lead concentration in sediment recorded at Bayswater Brook sediment sampling
sites 2020-2021
Figure 49: Nickel concentration in sediment recorded at Bayswater Brook sediment sampling
sites 2020-2021
Figure 50: Zinc concentration in sediment recorded at Bayswater Brook sediment sampling sites
2020-2021

Tables

Table 1 - Number of samples exceeding the water quality guidelines in 2020	vi
Table 2 - Number of samples exceeding the sediment quality guidelines in 2020	vi
Table 3 - Number of samples exceeding the water quality guidelines in 2021	
Table 4 - Number of samples exceeding the sediment quality guidelines in 2021	vii
Table 5: Bayswater Brook catchment sampling sites	12
Table 6: Surface water and sediment sample parameters and limits of reporting (LOR)	17
Table 7: Climate conditions preceding sample events	20
Table 8: pH summary 2020-2021	23
Table 9: Electrical conductivity summary 2020-2021	
Table 10: Dissolved oxygen saturation results summary 2020-2021	29
Table 11: Total suspended solids results summary 2020-2021	33
Table 12: Total nitrogen concentration results summary 2020-2021	36
Table 13: Total oxidised nitrogen concentration results summary 2020-2021	39
Table 14: Nitrogen as ammonia/ammonium results summary 2020-2021	41
Table 15: Total phosphorus concentration results summary 2020-2021	44
Table 16: Soluble reactive phosphorus concentration results summary 2020-2021	47
Table 17: Soluble aluminium concentration results summary 2020-2021	
Table 18: Soluble chromium concentration results summary 2020-2021	
Table 19: Soluble copper concentration results summary 2020-2021	
Table 20: Soluble lead concentration results summary 2020-2021	60
Table 21: Soluble nickel concentration results summary 2020-2021	
Table 22: Soluble zinc concentration results summary 2020-2021	67
Table 23: Summary of physio-chemical exceedances (2020-2021)	79
Table 24: Summary of nutrient exceedances (2020-2021)	82
Table 25: Summary of soluble metals exceedances (2020-2021)	85
Table 26: Sources of metals in stormwater (reproduced from SERCUL 2013)	87

EXECUTIVE SUMMARY

The Bayswater Brook (formerly Bayswater Main Drain) is a large drainage network with a catchment of 27,000 ha. It is the largest urban catchment in the Perth Metropolitan area and discharges into the Swan River. It is a permanently flowing drainage network that features both open drainage and piped drainage along its length.

The lower end of the drain was a natural watercourse linking numerous creeks and swamps throughout the catchment and flowing into the Swan River. In the 1920s the brook was modified for use as a drainage system to enable development of the area. The Bayswater Main drain intercepts groundwater to prevent flooding of low-lying areas and also receives stormwater from the large catchment area from numerous local government stormwater drains.

Regular water quality monitoring within the Bayswater Brook catchment began in 2006. The monitoring program has been altered since commencement on the basis of recommendations in the summary reports. This report provides a summary of the results of the 2020 and 2021 monitoring program as well as providing recommendations to support the long-term vision for the Bayswater Brook.

The Bayswater Brook monitoring program identified a number of water quality parameters that were recorded at concentrations that exceed ecosystem health criteria (ANZG 2018) toxicant trigger values for a 95% level of species protection, site specific Hardness Modified Trigger Value [HMTV], and default guideline values for south-west lowland rivers), as well as recreational guidelines (ANZG 2018).

Of particular concern during the 2020 and 2021 monitoring program are the widespread elevated levels of nitrogen (particularly in the form of total oxidised nitrogen and ammonia), as well as the elevated levels of soluble aluminum and zinc. Site BWMD16 was a site of specific ongoing concern, showing elevated levels of chromium and nickel in exceedance of the hardness modified trigger values, indicating the potential of a localised pollutant source nearby.

Nitrogen is noted as a key concern for the water quality within the Swan Canning Water Quality Improvement Plan (SRT 2009), which identifies the Bayswater Brook as a key subcatchment for TN load reduction.

Recommendations

The recommendations are intended to support the long-term vision for the Bayswater Brook and are linked to the proposed management actions identified in Waterwise Bayswater (Urbaqua, 2020). A risk management approach is recommended to assist with source identification across all potential water quality parameters of concern in surface waters, and prioritisation of future management actions.

The results from the 2020-2021 monitoring program are largely consistent with the results from the 2018-2019 monitoring program and therefore the recommendations for water quality improvement actions carry over from the Water and Sediment Quality in the Bayswater Brook Catchment 2018-2019 (Urbaqua, 2020) report.

The presence of a high density of septic tanks throughout the Bayswater Industrial area (Barron *et al.* 2010) provides a potential large source of nutrients to the lower section of the Bayswater

Brook. It is recommended that the City promote the replacement of septic tanks in the industrial area with reticulated sewage to significantly reduce ammonium nitrogen concentration in groundwater and the receiving drains.

Given the elevated concentrations of metals, and ongoing exceedance of assessment criteria at some monitoring locations, it is recommended that identification of the sources of metals be a high priority for water quality improvement within the catchment to reduce the risks to ecosystem health. Sub-catchment sites for the focus of small-medium enterprise audits by local government environmental health officers are identified.

Prioritisation and design of further water quality improvement projects within the greater catchment should consider the identification of areas of high groundwater contribution, the hydrological regime and key parameters of concern of the contributing sub-catchment, as well as site specific constraints to design and construction.

Summary results – Physiochemical

Executive Figure 1 shows the monitoring locations within the Bayswater Brook monitoring program where the median sample concentration for the 2020 and 2021 monitoring program was in exceedance of the respective default guideline levels.

рΗ

During the 2020 and 2021 monitoring period a number of sites recorded median pH levels that were outside of the ANZG (2018) default guidelines range. Lower pH levels were generally recorded in the northern section of the catchment which tended towards neutral closer to the Swan River outlet.

Electrical conductivity (EC)

All sites except for BWMD10 had a median EC in exceedance of the ANZG (2018) guidelines acceptable range. EC was generally higher towards the lower end of the catchment.

Dissolved oxygen (DO)

DO saturation was within the ANZG (2018) guideline range in the open drain sections at the lower end of the catchment. Further upstream there were a number of sites that had a median DO saturation below the ANZG (2018) guideline range.

Total suspended solids (TSS)

TSS concentrations were generally low across the catchment with most almost all sites recording median TSS concentrations below the DWER interim guideline level. There were four sites that had median TSS concentrations in exceedance of the interim guideline (BWMD03, BWMD06, BWMD09, and BWMD24). BWMD03 and BWMD06 are located within the vicinity of industrial areas within the catchment, while BWMD09 and BWMD24 are in more residential areas.

Summary results – Nutrients

Executive Figure 2 shows the monitoring locations within the Bayswater Brook monitoring program that had median nutrient concentrations in exceedance of the relevant default guidelines during the 2020 and 2021 monitoring program.

Total nitrogen (TN)

TN concentrations have been observed to be elevated at the Bayswater Brook catchment in the previous water and sediment quality reports (2014-2015, 2016-2017 & 2018-2019). During the 2018-2019 there were 7 sites that recorded a median TN concentration in exceedance of the ANZG (2018) guideline level. In the 2020-2021 monitoring period, there were 4 sites with a median in exceedance of the ANZG (2018) guideline level.

The sites in exceedance were generally located towards the southern end of the catchment, approaching the outlet to the Swan River. The median concentration at these sites was below the short-term reduction target level identified for the Bayswater Brook catchment in the Swan Canning Water Quality Improvement Plan (SRT 2009) but in exceedance of the long-term reduction target.

Total oxidised nitrogen (NO_x-N)

 NO_x -N was generally elevated across the study area. During the 2020 and 2021 monitoring program there were a total of 20 sites with a median NO_x -N concentration in exceedance of the ANZG (2018) default guideline level, 13 of which were in exceedance at all sampling events.

Nitrogen as ammonia/ammonium (NHx-N)

NH_x-N concentrations were elevated across the catchment but reduced from prior years. During the 2017-2018 monitoring program 21 sites recorded median NH_x-N concentrations in exceedance of the ANZG (2018) default guidelines level, 6 of which were in exceedance at all sampling events. During the 2020-2021 monitoring program, 7 sites recorded median NH_x-N concentrations in exceedance of the ANZG (2018) default guidelines level, none of which exceeded at every sampling event.

Total phosphorus (TP)

TP concentrations were generally within the ANZG (2018) guideline levels. Elevated concentrations were observed at a few sites throughout the monitoring program. A total of 5 sites recorded a median TP concentration in exceedance of the ANZG (2018) default guidelines level.

All sites recorded median concentrations of TP below both the short-term and long-term reduction target levels identified for the Bayswater Brook catchment in the *Swan Canning Water Improvement Plan* (SRT 2009), aside from BWMD24 which exceeded the long-term target.

Soluble reactive phosphorus (SRP)

SRP concentrations were generally within the guideline levels across the catchment. There were two sites that recorded medians in exceedance of the ANZG (2018) guideline level. This is an increase from no exceedances of median SRP in 2018-2019.

Summary results – Metals in water

Executive Figure 3 shows the monitoring locations within the Bayswater Brook catchment where 50% or more of the samples taken were in exceedances of their respective guidelines (Table 1, Table 3).

Aluminium (Al)

Soluble aluminium was elevated across the entire catchment, similar to the results of the previous surface water monitoring investigations. During the 2020 and 2021 monitoring program there 23 sites at which 50% or more of the samples taken were in exceedance of the ANZG (2018) toxicant trigger value for 95% level of species protection where the pH is above 6.5. There were 11 sites at which 50% or more of the samples were in exceedance of the ANZG (2018) recreational purposes guideline level.

Chromium (Cr)

Soluble chromium concentrations were generally low across the site. There were 3 sites that recorded an exceedance of the HMTV. BWMD16 exceeded the HMTV at all sampling events. All other sites did not exceed the HMTV on the majority of sampling occasions. This result has been observed at BWMD16 during the previous monitoring programs at the Bayswater Brook catchment.

Copper (Cu)

Two sites (BWMD24 and WELDSQUARE1) recorded exceedances of the HMTV at 50% or more of the samples taken in 2020-2021. No sites recorded exceedances of the HMTV at 50% or more of the samples taken in 2018-2019. Most of the exceedances recorded occurred in the month of July in both 2020 and 2021.

Lead (Pb)

Soluble lead concentrations during the 2020-2021 monitoring program were consistently below the HMTV at all sites. There was only 1 exceedance of the HMTV across the entire program (BWMD25, September 2020).

Nickel (Ni)

Soluble nickel concentrations during the 2020 and 2021 monitoring program were below the HMTV at all sites except two. BWMD16 was in exceedance of the HMTV at all sampling events across the monitoring period. BWMD02 recorded one exceedance in September 2021.

Zinc (Zn)

The soluble zinc concentration was elevated across the catchment. All sites were in exceedance of the HMTV at 50% or more of the samples taken during the 2020 and 2021 monitoring program. There was a total of 17 sites at which all samples taken were in exceedance of the HMTV; however, 2 of the sites were only sampled in July of each year.

Summary results – Metals in sediment

Sediment samples were taken from four sites (BWMD06, BWMD16, BWMD24 and BWMD26) that had been identified as having high metal concentrations in water during previous monitoring programs. Samples were taken during the September monitoring event of each year.

Aluminium (Al)

Aluminium in sediment did not exceed the adopted guideline during the 2020-2021 monitoring program.

Chromium (Cr)

Chromium in sediment did not exceed the ISQG low concentration of 80 mg/kg or the ISQG high concentration of 370 mg/kg in any sample during the 2020 and 2021 monitoring program.

Copper (Cu)

Copper in sediment did not exceed the ISQG low concentration of 65 mg/kg or the ISQG high concentration of 270 mg/kg in any sample during the 2020 and 2021 monitoring program. One exceedance was recorded in the 2018-2019 monitoring period.

Lead (Pb)

The concentration of lead in sediment was in exceedance of the ISQG low concentration value (50 mg/kg) at BWMD26 during September 2021 sampling event, but below the ISQG high concentration value (220 mg/kg). No other samples were in exceedance of the ISQG low or high concentration values during the 2020-2021 monitoring program.

Nickel (Ni)

The concentration of nickel in sediment was below the ISQG low concentration value of 21 mg/kg and the ISQG high concentration value of 52 mg/kg at all sites except BWMD16 during all sampling events. BWMD16 recorded one major exceedance of 390 mg/kg in September of 2021.

Zinc (Zn)

The concentration of zinc in sediment was notably elevated at BWMD26 at both the 2020 and 2021 sampling events. In 2020 the concentration reached 1,000 mg/kg and in 2021 the concentration reached 1,600 mg/kg; significantly higher than both the ISQG low concentration (200 mg/kg) and the ISQG high concentration (410 mg/kg). BWMD24 recorded one exceedance of the ISQG low concentration value in September of 2020 (210 mg/kg). All samples taken from the remaining sites were below the ISQG low and high concentrations.

Summary Results – Sites of concern

Based on all results, the following sites have been flagged as sites of concern. Parameters of note are listed alongside the sites. These are recommended to be closely monitored in future.

- BWMD02 (TN, NOx, SRP)
- BWMD06 (NH_x-N) (Al, Cu, Zn)
- BWMD09 (DO) (TP) (Al, Cr, Cu, Zn)
- BWMD15 (Al, Zn)
- BWMD16 (TN, NOx) (Al, Cr, Ni, Zn)
- BWMD24 (DO) (TP, SRP) (Cu, Zn)
- BWMD26 (TN, NOx, TP) (Zn)
- WELDSQUARE1 (AI, Cu, Zn)

		Water Quality Trigger Value			DWER
Measurement	Parameter	Lowland River	Freshwater 95% Protection	Recreation al	Interim Guidelin e
	рН	47	NA	NA	NA
Physical ¹	Dissolved Oxygen	55	NA	55	NA
	Total Suspended Solids	NA	NA	NA	14
	Conductivity	85	NA	NA	NA
	Total Nitrogen	12	NA	NA	NA
	Total Oxidised Nitrogen	33	NA	71	NA
Nutrients ¹	Ammonia-Ammonium	56	NA	NA	NA
	Total Phosphorus	19	NA	NA	NA
	Soluble Reactive	7	NA	NA	NA
	Aluminium	NA	69	23	NA
	Chromium*	NA	5	NA	NA
Soluble Metals ²	Copper*	NA	9	NA	NA
	Lead*	NA	2	NA	NA
	Nickel*	NA	3	NA	NA
	Zinc*	NA	69	NA	NA

Table 1 - Number of samples exceeding the water quality guidelines in 2020

Key

1	Number of water samples exceeding trigger value out of 85
2	Number of water samples exceeding trigger value out of 80
NA	Not applicable
*	Trigger value adjusted according to water hardness

Table 2 - Number of samples exceeding the sediment quality guidelines in 2020

			Jality Trigger NZG 2018)	Canadian Sediment Quality Guideline (Canadian Council of Ministers of the Environment 2002)	
Measurement	Parameter	DGV	GV-high		
	Aluminium	NA	NA	0	
	Chromium	0	0	NA	
Metals ¹	Copper	0	0	NA	
	Lead	0	0	NA	
	Nickel	0	0	NA	
	Zinc	2	1	NA	

Key

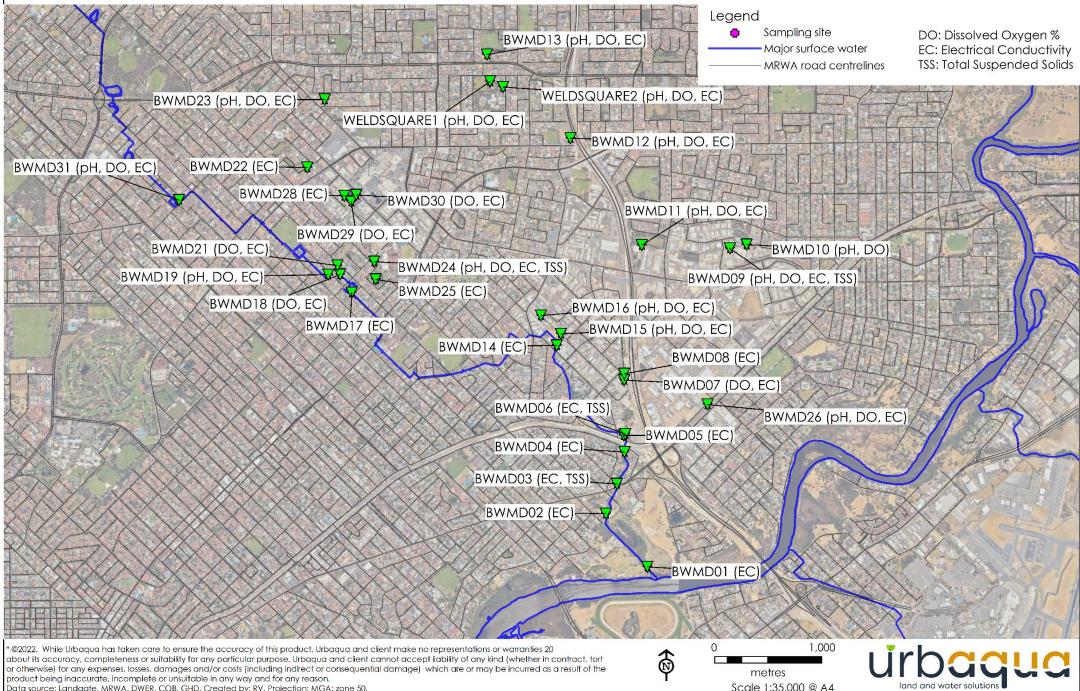
1	Number of sediment samples exceeding trigger value out of 4
NA	Not applicable

		Water Quality Trigger Value			DWER
Measurement	Parameter	Lowland River	Freshwater 95% Protection	Recreation al	Interim Guidelin e
	рН	27	NA	NA	NA
Physical ¹	Dissolved Oxygen	51	NA	51	NA
	Total Suspended Solids	NA	NA	NA	17
	Conductivity	89	NA	NA	NA
	Total Nitrogen	13	NA	NA	NA
Market and a 1	Total Oxidised Nitrogen	66	NA	NA	NA
Nutrients ¹	Ammonia-Ammonium	21	NA	59	NA
	Total Phosphorus	18	NA	NA	NA
	Soluble Reactive	4	NA	NA	NA
	Aluminium	NA	77	27	NA
	Chromium*	NA	4	NA	NA
Soluble Metals ²	Copper*	NA	15	NA	NA
	Lead*	NA	1	NA	NA
	Nickel*	NA	4	NA	NA
	Zinc*	NA	77	NA	NA

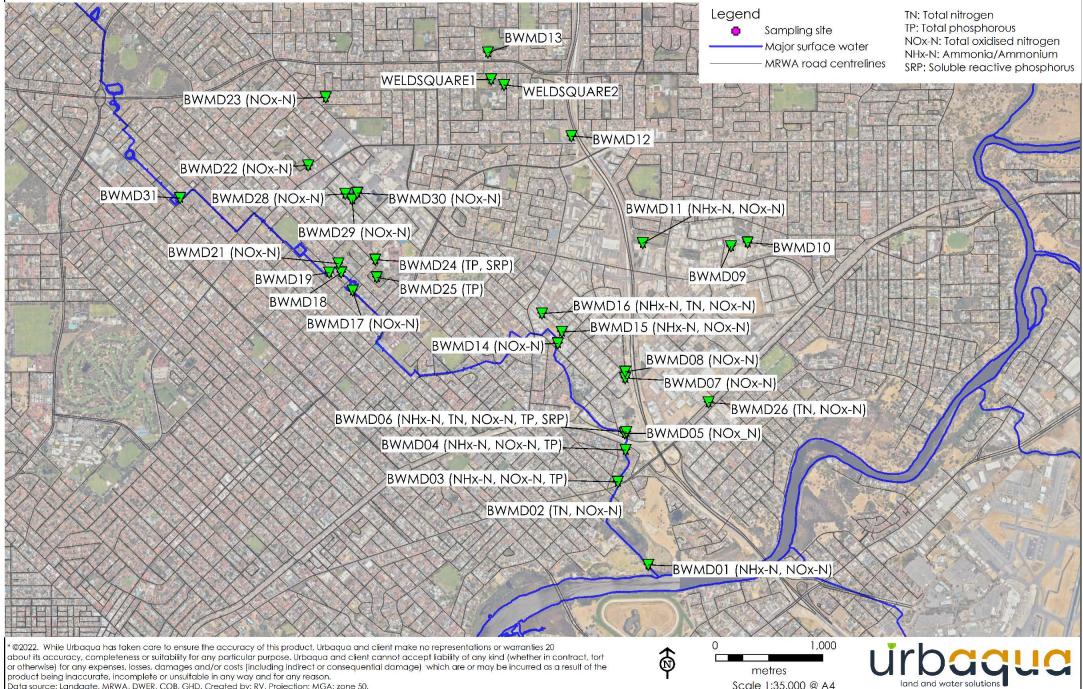
Table 3 - Number of samples exceeding the water quality guidelines in 2021

Key

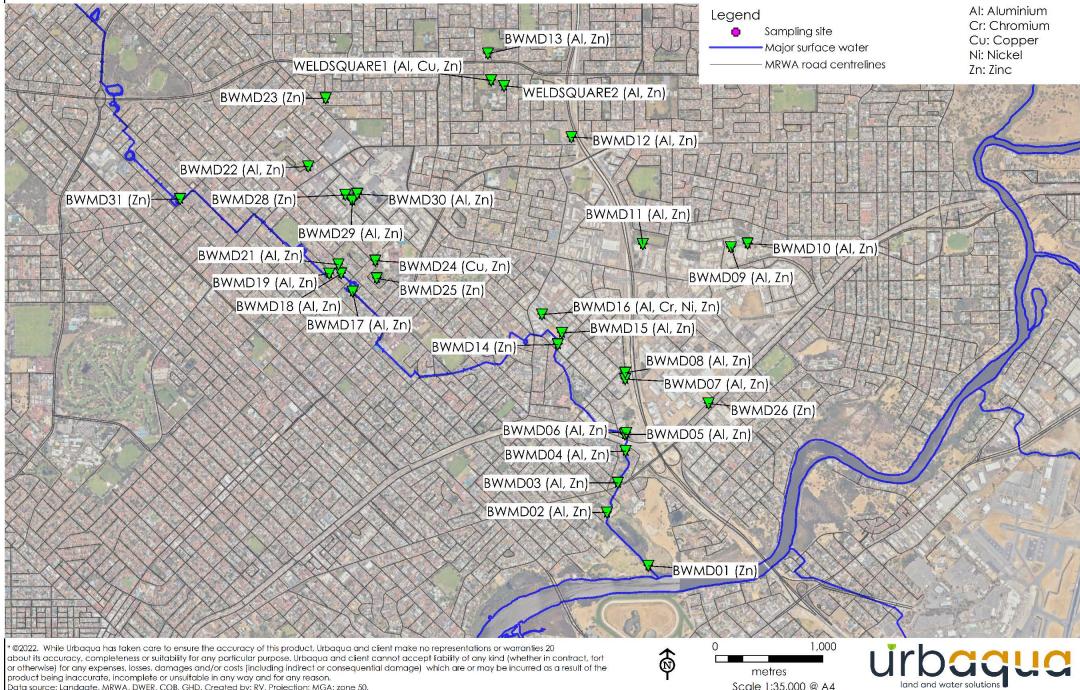
1	Number of water samples exceeding trigger value out of 89
2	Number of water samples exceeding trigger value out of 82
NA	Not applicable
*	Trigger value adjusted according to water hardness


Table 4 - Number of samples exceeding the sediment quality guidelines in 2021

		Sediment Qu Value (AN		Canadian Sediment Quality Guideline (Canadian Council of
Measurement	Parameter	DGV	GV-high	Ministers of the Environment 2002)
	Aluminium	NA	NA	0
	Chromium	0	0	NA
Metals ¹	Copper	0	0	NA
	Lead	1	0	NA
	Nickel	1	1	NA
	Zinc	1	1	NA


Key

1	Number of sediment samples exceeding trigger value out of 4
NA	Not applicable


City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure A1 - Physico-chemical exceedances (2020-2021)

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure A2 - Nutrient exceedances (2020-2021)

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure A3 - Soluble metal exceedences (2020-2021)

1 INTRODUCTION

1.1.1 Bayswater Brook

The Bayswater Brook (formerly Bayswater Main Drain) is a large drainage network with a catchment of 27,000 ha. It is the largest urban catchment in the Perth Metropolitan area and discharges into the Swan River. It is a permanently flowing drainage network that features both open drainage and piped drainage along its length.

Historically, the lower end of the drain was a natural watercourse linking minor waterways throughout the catchment before flowing into the Swan River. In the 1920s the brook was modified for use as a drainage system to enable development of the area. The Bayswater Brook intercepts groundwater to prevent flooding of low-lying areas and receives stormwater from surrounding local government stormwater drainage systems.

The dominant land use in the Bayswater Brook catchment is residential, with an additional large industrial area and several commercial zones, schools and sporting fields.

1.1.2 Water Quality Monitoring Program

Regular water quality monitoring within the Bayswater Brook catchment began in 2006. The monitoring program has been altered since commencement on the basis of recommendations from the summary reporting. An overview of the monitoring program includes;

- 2006: The Department of Water implemented a quarterly monitoring program at three sites within the Bayswater Brook
- 2007-2009: A once-off snapshot of water Bayswater Brook was conducted in July 2007, August 2008 and September 2009 to determine the location of pollution hotspot within the catchment that may be contributing to the contamination within the Bayswater Brook and Swan River.
- 2010: Sampling frequency increased to three times a year for greater temporal coverage and a more detailed profile of the catchment water quality.
- 2011: Changes made to the sample sites and suite of monitoring parameters.
- 2012-2015: Sediment sampling was included at four hot spot sites for the same suite of metals analysed in surface water sampling.
- 2016: 6 new sites were added to the program to increase the sampling profile within the catchment.
- 2017: The monitoring program was continued from 2016.
- 2018: The monitoring program was continued from 2017.
- 2019: The monitoring program was continued from 2018.
- 2020 & 2021: The monitoring program was continued unchanged from 2019.

1.2 Purpose of this report

The purpose of this report is to interpret the 2020-2021 water and sediment quality monitoring results from the Bayswater Brook catchment. An overview of historic trends in water quality is also provided to inform management actions that improve the ecological function of the drainage network.

2 METHODOLOGY

2.1 Sampling method

Surface water and sediment samples were collected in accordance with the Sampling and Analysis Plan; Bayswater Brook Water and Sediment Quality Monitoring 2020 (Urbagua 2020), Sampling and Analysis Plan; Bayswater Brook Water and Sediment Quality Monitoring 2021 (Urbaqua 2021) (the SAPs), and in accordance with the Department of Water and Environmental Regulation (DWER) standards and protocols.

The following sections summarise the monitoring sites, monitoring frequency, monitoring parameters and quality control procedures for the entire program.

2.2 Site selection

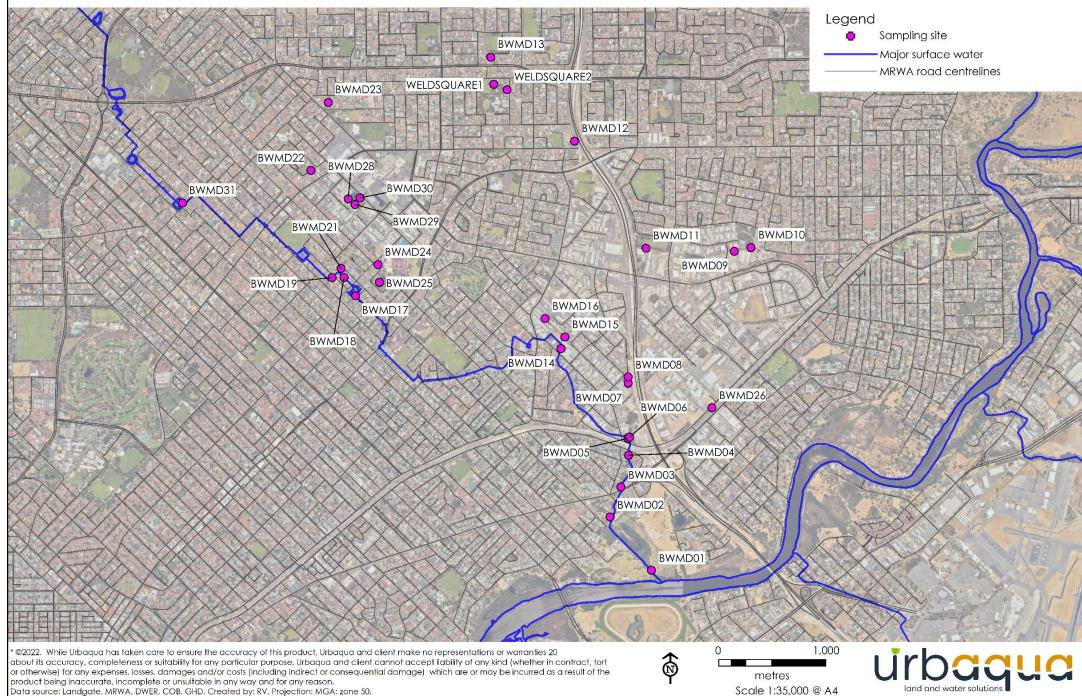
There are 31 sites across the catchment area. These sites have been selected such that:

- They are located up and downstream of potential pollution sources; .
- They are located up and downstream of rehabilitation projects;

- They will provide baseline data for a small branch of the main drain; and,
- They are generally representative of that section of the catchment. •

Error! Reference source not found. provides a description and the coordinates of each site with locations illustrated in Figure 1.

Table 5: Bayswater Brook catchment sampling sites


WIN Site code	Drain section	Location	Easting	Northing
BWMD01	Memorial Road Bayswater	Open drain: Riverside gardens, downstream of bird sanctuary wetland, 10 m downstream of footbridge	398393.8	6466808.1
BWMD02	King William St Bayswater	Open drain: Before confluence of King William St branch drain with main drain	398011.0	6467301.6
BWMD03	Guildford Road Bayswater	Open drain: Downstream of confluence with Railway Pde branch drain	398111.1	6467578.2
BWMD04	Whatley Cr Bayswater	Open drain: Upstream of confluence with Railway Pde branch drain	398182.8	6467874.2
BWMD05	Railway Pde Bayswater	Open drain: Durham Rd branch drain, before confluence with main drain	398176.8	6468028.8
BWMD06	Tonkin Hwy (west) Bayswater	Open drain: Upstream of Durham Road branch drain	398191.1	6468042.0
BWMD07	Mooney St Bayswater	Wetland: Outlet from wetland to main drain, on south western edge of wetland (drive in)	398179.8	6468541.2
BWMD08	Bassendean Rd Bayswater	Open drain: Upstream of inlet into Mooney St wetland	398179.8	6468600.0

WIN Site code	Drain section	Location	Easting	Northing
BWMD09	Fairford St Bassendean	Open drain – living stream: Downstream of revegetation site, upstream of pipe under Fairford St	399162.7	6469764.2
BWMD10	Fairford St Bassendean	Open drain – living stream: Upstream of revegetation site, from Scaddan St	399317.7	6469799.3
BWMD11	Shalford St Bassendean	Open drain: Joan Rycroft reserve, from most downstream point (straight forward from park entrance)	398343.7	6469793.4
BWMD12	Tonkin Hwy (north) Embleton	Open drain: Downstream of confluence with drains from Elstead reserve (access at end of Walter Rd)	397680.4	6470785.8
BWMD13	Waltham Wy Morley	Downstream of basin adjacent to Waltham reserve, upstream of piping under Morley Drive	396904.4	6471563.6
BWMD14	Clavering Rd Bayswater	Open drain: Northern side of Clavering Rd, upstream of piped section under Clavering Rd	397555.2	6468862.6
BWMD15	James St Bayswater	Open drain: Before weir and confluence with northern branch of drain	397591.4	6468970.5
BWMD16	Christian St Bayswater	Open drain: Northern branch of drain, sample from King St	397407.6	6469140.5
BWMD17	Catherine St Morley	Wetland (Brown's Lake): Outlet from wetland into main drain on southern side of wetland	395649.7	6469351.8
BWMD18	Gummery St Morley	Open drain: Downstream of confluence of 2 branching drains	395542.9	6469521.0
BWMD19	Lawrence Rd Bedford	Open drain: At most downstream section of drain	395431.3	6469520.8
BWMD21	Coode St Morley	Open drain: At most downstream section of drain	395517.1	6469605.2
BWMD22	Jakobsens Way Dianella	Open drain: Adjacent to Jakobsens reserve, from footbridge	395236.4	6470514.1
BWMD23	Vera St Morley	Open drain: Most downstream point	395398.1	6471145.5
BWMD24	Drake Way Morley	Open drain: Upstream of inlet with Nora Hughes Lake, adjacent to intersection with Catherine St	395858.5	6469640.7
BWMD25	Drake Way Morley	Wetland: Outlet pipe from Nora Hughes wetland	395871.8	6469477.1
BWMD26	Railway Pde Bayswater	Open drain: Downstream of CSBP fertiliser site on Railway pde branch drain (Railway crossing)	398954.8	6468314.6
BWMD28	Russell St Morley	Wetland opposite Bunnings: Inlet in western corner	395581.4	6470251.2

WIN Site code	Drain section	Location	Easting	Northing
BWMD29	Russell St Morley	Wetland opposite Bunnings: Outlet in southern corner	395645.4	6470197.2
BWMD30	Russell St Morley	Wetland opposite Bunnings: Inlet in eastern corner	395691.3	6470259.7
BWMD31	Pola St Dianella	Open drain: Drain outlet from compensation basin at corner of Pola St and Surrey St	394046.4	6470212.5
WELDSQUARE1	Fitzgerald Rd Morley	Weld Square Living Stream: Inlet in northern corner	396934.5	6471313.6
WELDSQUARE2	Clarke Rd Morley	Weld Square Living Stream: outlet in eastern corner	397055.1	6471261.8

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 1 - Sampling locations

2.3 Monitoring frequency

Surface water and sediment samples were collected monthly over a three-month period in both 2020 and 2021 in accordance with the SAPs. Sampling was conducted by appropriately trained City of Bayswater, Department of Water and Environmental Regulation (DWER) and Department of Biodiversity, Conservation and Attractions (DBCA) staff.

2.3.1 Monitoring Status – 2020-2021

For the monitoring year 2020, sampling was completed on the following dates:

- 1st and 2nd of July
- 5th and 6th of August
- 2nd and 3rd of September

For the monitoring year 2021, sampling was completed on the following dates:

- 21st and 22nd of July
- 18th and 19th of August
- 15th and 16th of September

2.3.2 Missed samples

Sampling was attempted from each of the 31 sample sites during the 2020 and 2021 monitoring programs. BWMD20 was removed as it was found to be consistently dry and BWMD27 was removed due to lack of access. BWMD30 was only sampled on one occasion and was found to be mostly dry on other occasions.

2.4 Water and sediment quality parameters

2.4.1 In situ water samples

Water samples were measured in situ for the following parameters:

- pH;
- Dissolved oxygen;
- Electrical conductivity; and,
- Temperature.

2.4.2 Water and sediment samples for laboratory analysis

Analyses of surface water and sediment samples were undertaken by the ChemCentre, which is accredited by the National Association of Testing Authorities (NATA) for the required analyses. Parameters and limits of reporting (LOR) for surface water and sediment samples are listed in

Table 6: Surface water and sediment sample parameters and limits of reporting (LOR)2.

Water samples	Laboratory limit of reporting (LOR)
Parameter	ChemCentre LOR
Physico-chemical	
Total suspended solids	1.0
Total water hardness	1.0
Nutrients	
Total nitrogen	0.025
Total organic nitrogen	0.025
Total oxidised nitrogen	0.01
Nitrogen as ammonia/ammonium	0.01
Dissolved organic nitrogen	0.025
Total phosphorus	0.005
Soluble reactive phosphorus	0.005
Metals	
Aluminium – total and soluble	0.005
Chromium – total and soluble	0.0001
Copper - total and soluble	0.0001
Lead - total and soluble	0.0001
Nickel - total and soluble	0.0005
Zinc - total and soluble	0.005/0.001
Sediment samples	
Moisture	0.1
Aluminium	10
Chromium	0.05
Copper	0.1/0.5
Lead	0.5
Nickel	0.1
Zinc	5/0.25

2.5 Quality assurance and quality control measures

The City of Bayswater maintains a SAP for the Bayswater Brook monitoring program that is reviewed on an annual basis. Sampling procedures for surface water and sediment are in place and comply with Australian Standards. Details of the quality assurance and quality control measures are defined in the SAP, including:

- Field parameter sampling procedures (including replicates and field blank requirements).
- Sample collection and storage techniques.
- Sample labelling and chain of custody procedures; and
- Laboratory in-house quality assurance/quality control procedures.

Sampling was conducted by appropriately trained City of Bayswater and Department of Water and Environmental Regulation staff.

2.6 Guideline values and toxicant trigger values

The selection of assessment criteria for water and sediment quality results is determined by a number of factors including;

- The environmental value (EV) and level of protection of the water body and its receiving environment; and,
- The use of the water and water body.

While the Bayswater Brook catchment and drain are both highly modified ecosystems, the receiving environment is the Swan River which holds significant environmental value. From a water use perspective, the Bayswater Brook is not used for drinking or irrigation purposes, however it is open in many places and accessible to the public. The water quality results have therefore been compared to the recreational guidelines to account for risks to public health. The following criteria are used to assess the surface water quality:

- Australian and New Zealand guidelines for freshwater and marine water quality (ANZG 2018) where metals are compared to toxicant trigger values for a 95% level of species protection for freshwater ecosystems. The trigger value for aluminium is applied when the pH is greater than 6.5. Trigger values for cadmium, chromium, copper, lead, nickel and zinc in water require adjustment for hardness to reach a site-specific hardness modified trigger value (HMTV) as outlined in ANZG (2018).
- Australian and New Zealand guidelines for freshwater and marine water quality (ANZG 2018) for lowland rivers of south-western Australia, referred to as the default guideline values, which have been developed from regional datasets for ecosystems in the south-west of Western Australia.
- Australian and New Zealand guidelines for recreational water quality and aesthetics (ANZG 2018), referred to as the recreational purpose guidelines.
- Swan Canning Water Quality Improvement Plan (SRT 2009) for short and long-term nutrient targets.

The ANZG (2018) sediment assessment levels are referred to as the Interim Sediment Quality Guidelines (ISQGs). The guidelines have two concentrations, the ISQG-Low concentration (or trigger value) and the ISQG-High concentration, which represent a threshold concentration below which the frequency of adverse effects is expected to be low. The ISQG-High is intended as a trigger value above which adverse biological effects are expected to occur more frequently (DEC 2010).

3 **RESULTS**

This section summarises the results of the 2020-2021 Bayswater Brook monitoring program as well as the historical range and trends in water quality. Tables of the full results for water and sediment quality have been included in the Appendix.

3.1 Rainfall

Daily rainfall over the 2020-2021 monitoring period is shown in Figure 2 along with minimum and maximum daily temperatures recorded at the Bureau of Meteorology's Perth Metro station (station ref 9225). 2020-2021 sampling event dates are also indicated.

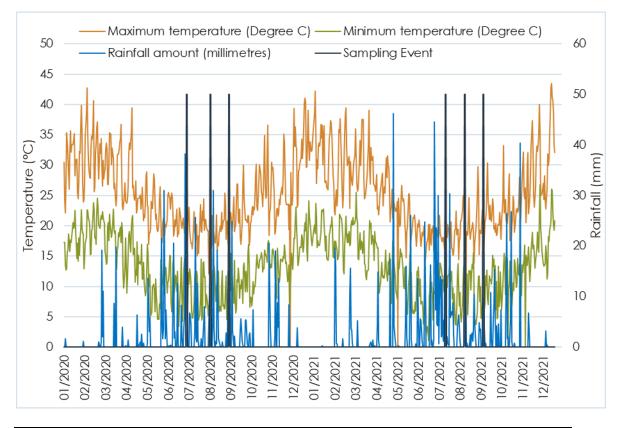


Figure 2: Daily rainfall and temperature recorded in the Perth Metropolitan area 2020-2021 (station ref. 9225) (BoM, 2022)

Sample date	Preceding conditions
2020 monitoring events	
1 st and 2 nd of July	49.0mm of rainfall were recorded in the four days prior to sampling. During sampling 3.0mm recorded on the 1 st and no rainfall was recorded on the 2 nd .
5 th and 6 th of August	15.0mm measured in the 4 days preceding the sampling. No rain was recorded during either event.
2 nd and 3 rd of September	17.8mm of rainfall were recorded in the four days prior to sampling. 5.8mm were recorded on the 2 nd and 0.8mm were recorded on the 3 rd .
2021 monitoring events	
21 st and 22 nd of July	10.8mm of rainfall were recorded in the four days prior to sampling. During sampling 29.6mm were recorded on the 21 st and no rainfall was recorded on the 22 ^{nd.}
18 th and 19 th of August	Unseasonably dry; 0.2 mm were recorded in the 4 days prior to sampling. During sampling 1.2mm were recorded on the 18 th and 1.0mm were recorded on the 19 th .
15 th and 16 th of September	Unseasonably dry; 3.6mm of rainfall was recorded in the 4 days preceding the sampling. No rainfall was recorded on the 15 th and 9.8mm were recorded on the 16 th .

Table 7: Climate conditions preceding sample events

3.2 Field record

Field observation forms include the detail of the flow conditions at the time of sampling and field observations of a site's condition. Copies of the field observation forms have been included in Appendix B.

3.3 Physico-chemical

All physico-chemical results from the 2020-2021 Bayswater Brook monitoring program have been included in Appendix A. The following sections describe the notable results. Discussion of results can be found in Section 5.1

3.3.1 pH

The ANZG (2018) default guideline range for pH for lowland rivers in south-western Australia is 6.5 – 8, while the ANZG (2018) recreational trigger value range is 6.5 – 8.5.

2020 Results

The pH recorded during 2020 ranged between a minimum of 5.31 at BWMD13 in August to 9.12 at BWMD25 in September (Figure 3). The general trend in pH across the sampling sites was neutral to slightly acidic with a mean of 6.48 and a median of 6.46. 46 of the 85 samples taken recorded a pH level less than 6.5 which makes 54% of the samples outside the ANZG (2018) guidelines acceptable range. One sample, BWMD225, lies above the guidelines with a peak pH of 9.12 in September. BWMD sites 9, 10, 11, 12, 13, 15, 16, 19, 23, 26 and 31, as well as both WELDSQUARE sites were outside of the acceptable range at all sampling events in 2020.



Figure 3: pH recorded at Bayswater Brook surface sampling sites 2020

2021 Results

The pH recorded during 2021 ranged between a minimum of 6.10 at BMWD10 in August to 7.47 at BWMD18 in September (Figure 4). The general trend in pH across the sampling sites was neutral to slightly acidic with a mean of 6.72 and a median of 6.66. 27 of the 89 samples (approximately 21%) were below the ANZG (2018) guidelines acceptable range. BWMD11 and WELDSQUARE02 were below ANZG (2018) guidelines during all 2021 sampling events.



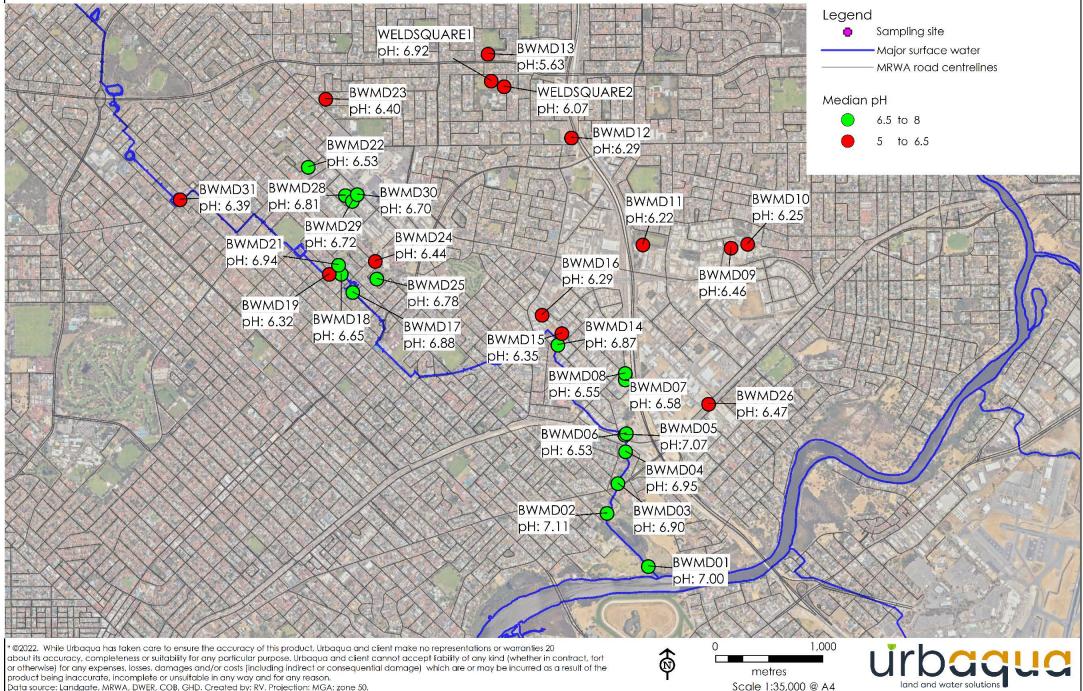
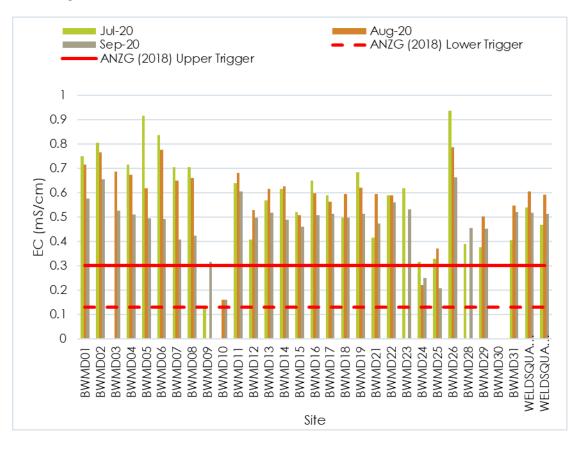

Figure 4: pH recorded at Bayswater Brook surface sampling sites 2021

Table 8 shows a brief summary of the notable results from the in-situ pH sampling undertaken at the Bayswater Brook catchment over the 2020-2021 monitoring period.

Table 8: pH summary 2020-2021

pH results	Site
Median concentration of samples taken over 2020-2021 outside of ANZG (2018) acceptable range	BWMD09, BWMD10, BWMD11, BWMD12, BWMD13, BWMD15, BWMD16, BWMD19, BWMD23, BWMD24, BWMD26, BWMD31, WELDSQUARE1, WELDSQUARE2
Number of sites recording one or more exceedance of the default guideline range in 2020	21
Number of sites recording one or more exceedance of the default guideline range in 2021	16
Maximum pH	9.12 (BWMD13, August 2020)
Minimum pH	5.31 (BWMD25, September 2020)

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 5 - Median pH (2020-2021)

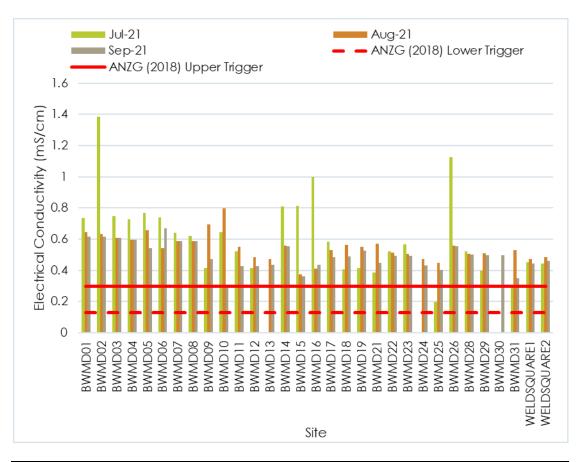


3.3.2 Electrical Conductivity (EC)

The ANZG (2018) default guideline range for electrical conductivity (EC) in lowland rivers in south-west Australia is 0.12 mS/cm to 0.3 mS/cm.

2020 Results

During 2020, EC ranged from a minimum of 0.135 mS/cm at BWMD09 in July to a maximum of 0.938 mS/cm at BWMD26 in July (Figure 6). Aside from BWMD sites 09, 10, 24 and 25, all sites recorded an EC in exceedance of the ANZG (2018) guidelines acceptable range during all monitoring events.



2021 Results

During 2021, EC ranged from a minimum of 0.199 mS/cm at BWMD25 in July to 1.385 mS/cm at BWMD02 in July (Figure 7). Aside from sites 25 and 31, all sites recorded an EC in exceedance of the ANZG (2018) guidelines acceptable range during all monitoring events.

Figure 7: Electrical conductivity recorded at Bayswater Brook surface water sampling sites 2021

Table 9 shows a brief summary of the notable results from the in-situ EC sampling undertaken at the Bayswater Brook catchment over the 2020-2021 monitoring period.

Electrical conductivity results	Site
Median from samples taken during 2020-2021 outside of ANZG (2018) guidelines acceptable range	All except BWMD10
Number of sites recording one or more exceedance of the default guideline range in 2020	All except BWMD10
Number of sites recording one or more exceedance of the default guideline range in 2021	All
Maximum	1.385 mS/cm (BWMD02, July 2021)
Minimum	0.135 mS/cm (BWMD09, July 2020)

Table 9: Electrical conductivity summary 2020-2021

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 8 - Median Electrical Conductivity (2020-2021)

3.3.3 Dissolved oxygen saturation (DO)

The ANZG (2018) default guideline range for dissolved oxygen saturation (DO%) for lowland rivers in south-west Western Australia is 80% to 120% saturation.

2020 Results

During 2020, DO saturations ranged from a minimum of 11.6% at BWMD10 in August to a maximum of 158.4% at BWMD25 in September. The majority of the sampling sites recorded DO saturations outside the ANZG (2018) guidelines acceptable range at the majority of the sampling events (Figure 9). All sites except BWMD 01, 02, 03, 04, 05, 08, 14, 15, 17 and 28 had a median saturation below the guideline range. BWMD25 was the only site with a saturation above the guideline range.

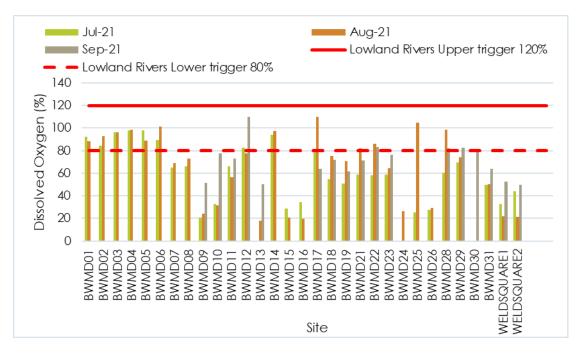


Figure 9: Dissolved oxygen saturation recorded at Bayswater Brook surface water sampling sites 2020

2021 Results

During 2021, DO saturations ranged from a minimum of 17.8% at BWMD13 in August to a maximum of 109.9% at BWMD12 in September and BWMD17 in August. A majority of the sampling sites recorded DO saturations outside the ANZG (2018) guidelines acceptable range at a majority of the sampling events (Figure 10). All sites except BWMD 01, 02, 03, 04, 05, 06, 12, 14, 22 and 28 had a median saturation below the guideline range.

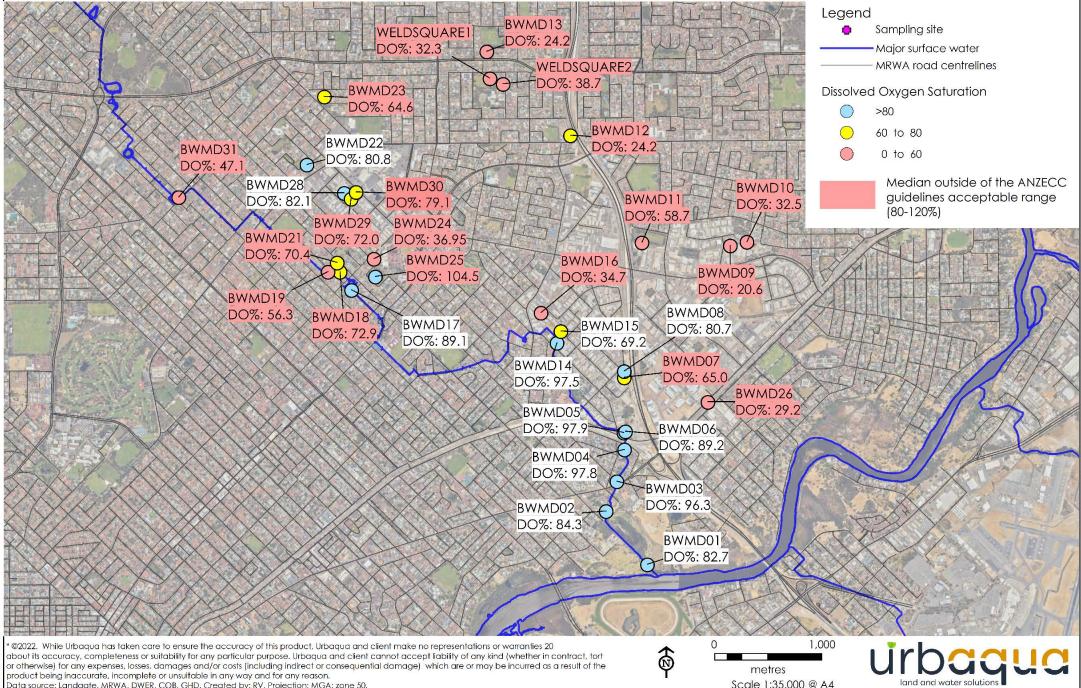

Figure 10: Dissolved oxygen saturation recorded at Bayswater Brook surface water sampling sites 2021

Table 10 provides a brief summary of the notable results from in-situ sampling of DO during the 2020-2021 monitoring program.

Table 10: Dissolved oxygen saturation results summary 2020-2021

Dissolved oxygen saturation results	Site
Sites with median dissolved oxygen saturation within the ANZG (2018) guidelines acceptable range from samples taken during 2020-2021	BMWD01, BMWD02, BMWD03, BMWD04, BMWD05, BMWD06, BMWD08, BMWD14, BMWD17, BMWD22, BMWD28
Number of sites recording one or more exceedance of the default guideline value in 2020	24
Number of sites recording one or more exceedance of the default guideline value in 2021	24
Maximum	158.4% (BWMD25, September 2020)
Minimum	11.6% (BWMD10, August 2020)

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 11 - Median Dissolved Oxygen Saturation (%) (2020-2021)

3.3.4 Total Suspended Solids (TSS)

The Department of Water and Environmental Regulation (DWER) has an interim guideline for total suspended solids (TSS) of 6 mg/L.

2020 Results

TSS at the Bayswater Brook sampling sites were mostly below the DWER guideline level. However, a number of sites significantly exceeded the guideline level. BWDM sites 05, 06, 09, 13 and 24 along with WELDSQUARE1 all gave results above 10mg/L (Figure 12). Concentrations ranged from a minimum of <1 mg/L (the limit of reporting) at multiple sites and events, to a maximum of 28 mg/L at BWMD24 in August. BWDM sites 06, 09, 12, and 24 had median TSS concentrations in exceedance of the DWER guideline.

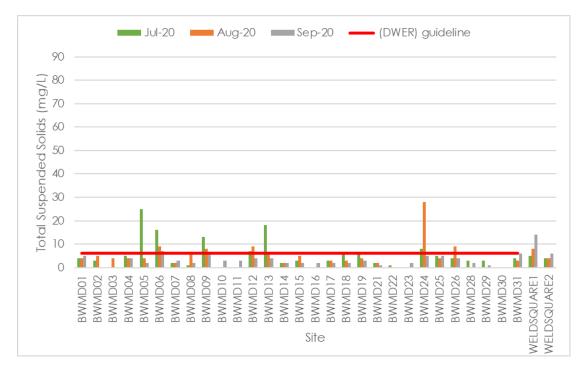


Figure 12: Total suspended solids concentration recorded at Bayswater Brook surface water sampling sites in 2020

2021 Results

Similar to 2020, TSS at the Bayswater Brook sampling sites were mostly below the DWER guideline level. However, a number of sites significantly exceeded the guideline level. BWDM sites 03, 04, 06, 09, 12, 24, 26 and 31 all gave results above 10mg/L (Figure 13). Concentrations ranged from a minimum of <1 mg/L (the limit of reporting) at multiple sites and events, to a maximum of 88 mg/L at BWMD06 in September. BWDM sites 03, 04, 06, 09, 24 and 26 had median TSS concentrations in exceedance of the DWER guideline.

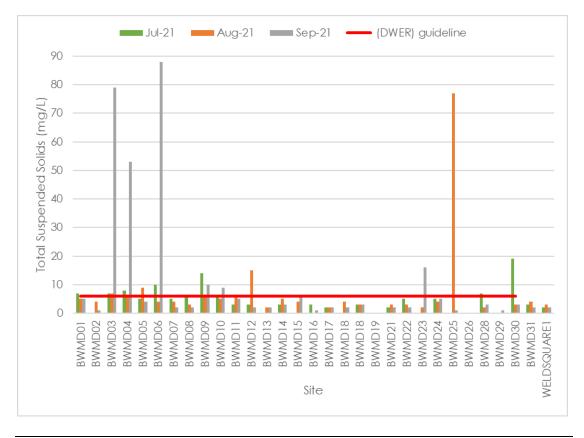


Figure 13: Total suspended solids concentration recorded at Bayswater Brook surface water sampling sites in 2021

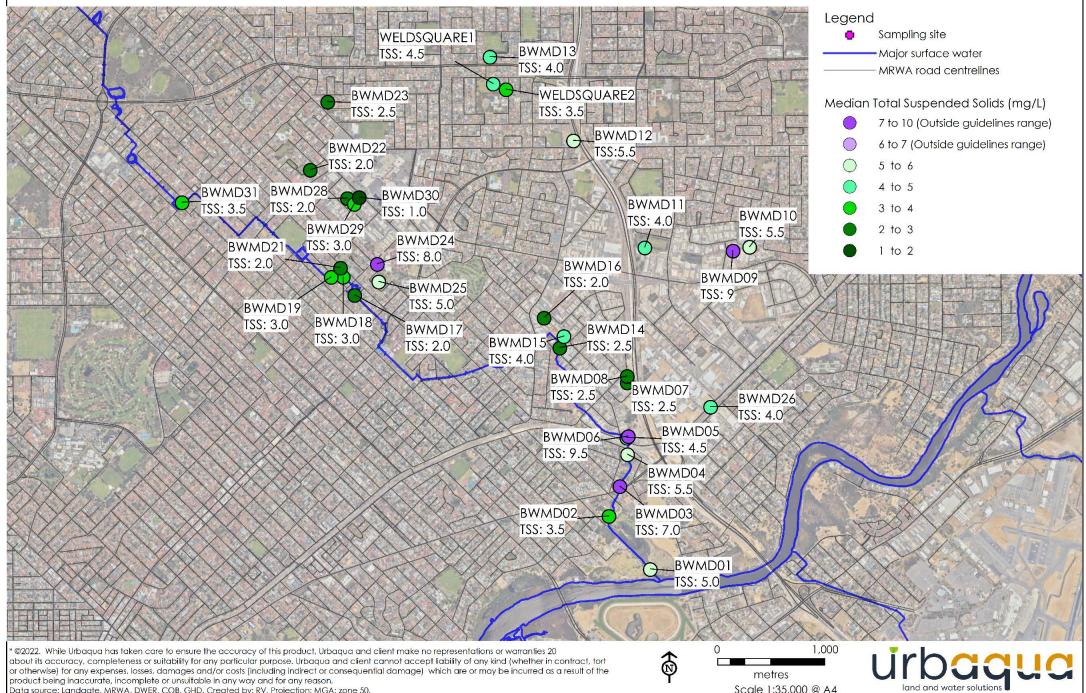

Table 11 provides a summary of the notable results from laboratory TSS measurements during the 2020-2021 monitoring program.

Table 11: Total	suspended solid	s results summa	v 2020-2021
			,

Total suspended solids results	Site
Sites with median TSS concentrations in exceedance of the DWER interim guideline (6 mg/L) from samples taken during the 2020- 2021 monitoring program.	BWMD03, BWMD06, BWMD09, BWMD24
Number of sites recording one or more exceedance of the default guideline value in 2020	8
Number of sites recording one or more exceedance of the default guideline value in 2021	12
Maximum	88 mg/L (BWMD06, September 2021)
Minimum	<1 mg/L July 2020: BWMD11 August 2020: BWMD22 September 2020: BWMD02 BWMD03 BWMD22 July 2021: BWMD02 BWMD02 BWMD02

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 14 - Median Total Suspended Solids (2020-2021)

3.4 Nutrients in Water

All nutrients in water results from the Bayswater Brook 2018-2019 monitoring program are included in Appendix A. Section 5.2 summarises the notable results.

3.4.1 Total Nitrogen (TN)

The ANZG (2018) default guideline value (DGV) for total nitrogen (TN) in lowland rivers in the south-west of Western Australia is 1.2 mg/L.

2020 Results

TN concentrations in 2020 ranged from a minimum of 0.4 mg/L at BWMD10 and BWMD24 in September to a maximum of 2.4 mg/L at BWMD16 in July (Figure 15). Sites BWMD02, BWMD06, BWMD16 and BWMD26 recorded median TN concentrations in 2020 above the ANZG guidelines level (1.2 mg/L).

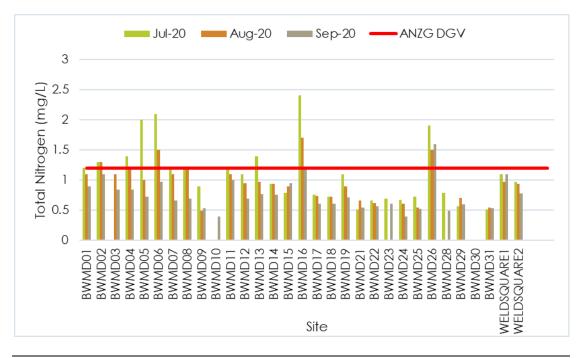
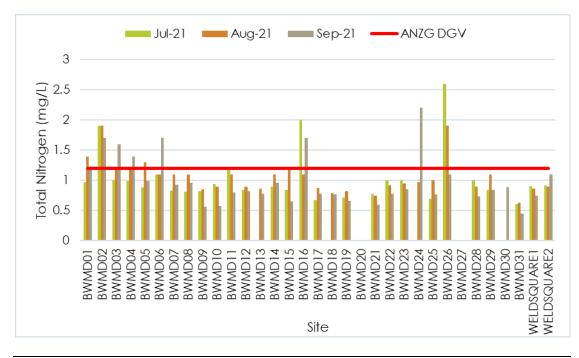



Figure 15: Total Nitrogen concentration recorded at Bayswater Brook surface water sampling sites 2020

2021 Results

TN concentrations in 2021 ranged from a minimum of 0.45 mg/L at BWMD31 in September to a maximum of 2.6 mg/L at BWMD26 in July (Figure 16). Sites BWMD02, BWMD16 and BWMD24 recorded median TN concentrations above the ANZG guidelines level in 2021.

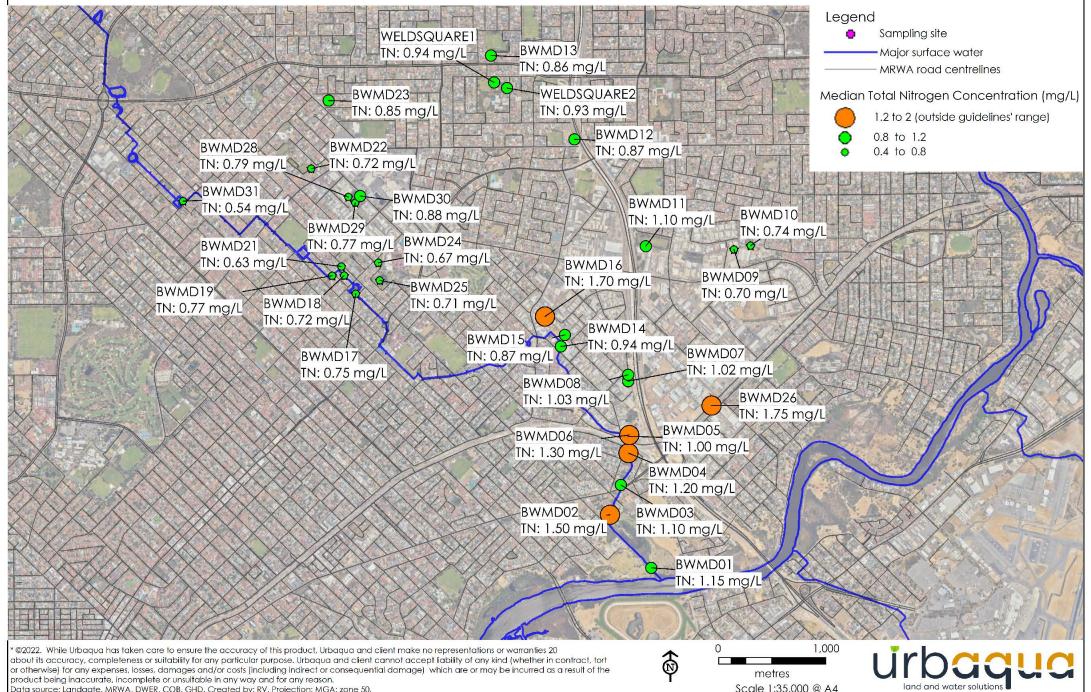
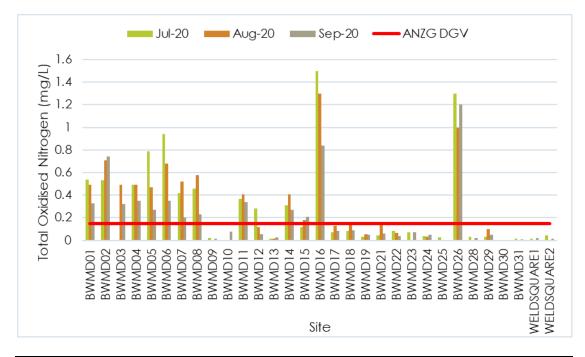


Figure 16: Total Nitrogen concentration recorded at Bayswater Brook surface water sampling sites 2021

Table 12 provides a summary of the notable results from laboratory TN measurements during the 2020-2021 monitoring programs.

Total nitrogen results	Site
Median TN concentration in exceedance of ANZG (2018) lowland rivers guideline (1.2 mg/L) from samples taken during 2020-2021	BWMD02, BWMD06, BWMD16, BWMD26
Number of sites recording one or more exceedance of the default guideline value in 2020	7
Number of sites recording one or more exceedance of the default guideline value in 2021	9
Maximum	2.6 mg/L (BWMD26, July 2021)
Minimum	0.40 mg/L (BWMD10 & BWMD24, September 2020)

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 17 - Median Total Nitrogen Concentration (2020-2021)



3.4.2 Total Oxidised Nitrogen (NOx)

The ANZG (2018) default guideline value (DGV) for inorganic oxidised nitrogen (NO_x) for lowland rivers in south-west Western Australia is 0.15 mg/L.

2020 Results

NOx concentrations were elevated across a number of the sampling sites. Concentrations ranged from a minimum of 0.005 mg/L at several sites in August and BWMD25 in September to a maximum of 1.5 mg/L at BWMD16 in August. BWMD sites 01, 02, 03, 04, 05, 06, 07, 08, 11, 14, 16, and 26 were in exceedance of the ANZG (2018) guidelines level at all sampling sites in 2020. BWMD sites 01, 02, 03, 04, 05, 06, 07, 08, 11, 14, 15, 16 and 26 had median NOx concentrations in exceedance of the ANZG (2018) guideline level.

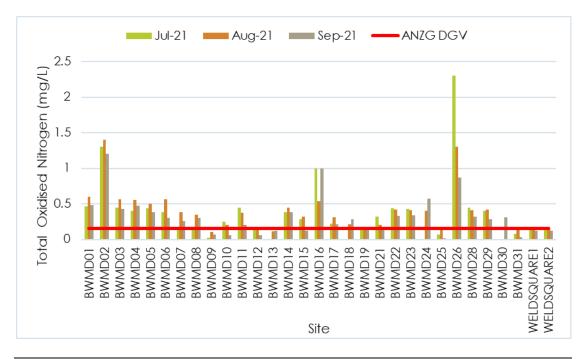


Figure 18: Total oxidised nitrogen concentration recorded at Bayswater Brook surface water sampling sites 2020

2021 Results

NOx concentrations in 2021 followed a similar trend to 2020 with elevated concentrations across the study area. Concentrations ranged from a minimum of 0.011 mg/L at BWMD25 in September to a maximum of 2.3 mg/L at BWMD26 in July. BWMD sites 01, 02, 03, 04, 05, 06, 07, 08, 09, 11, 14, 16, 17, 18, 22, 23, 26, 28, 29 and 30 were in exceedance of the ANZG (2018) guideline level at all sampling events in 2021.

Figure 19: Total oxidised nitrogen concentration recorded at Bayswater Brook surface water sampling sites 2021

Table 13 provides a summary of the notable results from laboratory NO_x measurements taken during the 2020-2021 monitoring program.

Table 12. Tabal syldiand	nilus a su son son lugito.		
Table 13: Total oxidised	nifrogen concentration	i results summary	/ 2020-2021

Total oxidised nitrogen results	Site
Median concentration in exceedance of the ANZG (2018) guideline level from samples taken during 2020-2021	BWMD01, BWMD02, BWMD03, BWMD04, BWMD05, BWMD06, BWMD07, BWMD08, BWMD11, BWMD14, BWMD15, BWMD16, BWMD17, BWMD21, BWMD22, BWMD23, BWMD26, BWMD28, BWMD29, BWMD30
Number of sites recording one or more exceedance of the default guideline value in 2020	16
Number of sites recording one or more exceedance of the default guideline value in 2021	27
Maximum	2.3 mg/L (BWMD26, July 2021)
Minimum	<0.01 mg/L (BWMD09, BWMD25, BWMD31, WELDSQUARE1, WELDSQUARE2, August 2020), (BWMD09, September 2020)

3.4.3 Nitrogen as ammonia/ammonium (NH_x-N)

The ANZG (2018) default guideline value (DGV) for nitrogen as ammonia/ammonium (NH_x-N) for lowland rivers in south-west Western Australia is 0.08 mg/L.

2020 Results

The concentration of NH_x-N ranged from a minimum of <0.01 mg/L (the limit of reporting) at several sites across all events to a maximum of 0.64 mg/L at BWMD05 and BWMD06 in July (Figure 20). Sites BWMD01, BWMD02, BWMD03, BWMD04, BWMD06, BWMD11, BWMD12, BWMD14, BWMD15, BWMD16, BWMD19 and BWMD26 recorded median concentrations in exceedance of the ANZG (2018) guideline level.

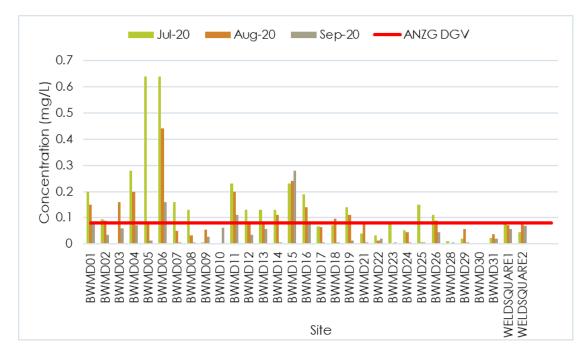
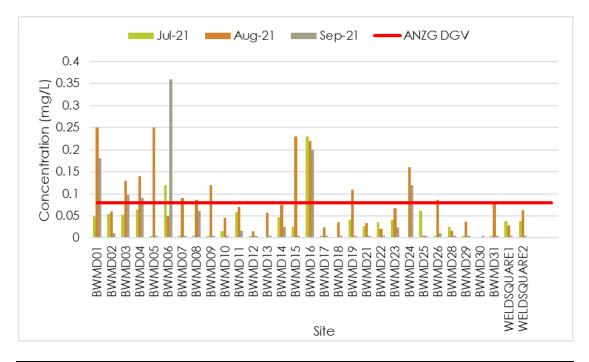



Figure 20: Ammonia/ammonium concentration recorded at Bayswater Brook surface water sampling sites 2020

2021 Results

The concentration of NH_x-N ranged from a minimum of <0.01 mg/L (the limit of reporting) at several sites across all events to a maximum of 0.36 mg/L at BWMD06 in September (Figure 21). Sites BWMD01, BWMD03, BWMD04, BWMD06, BWMD16, and BWMD24 recorded median concentrations in exceedance of the ANZG (2018) guideline level.

Figure 21: Ammonia/ammonium concentration recorded at Bayswater Brook surface water sampling sites 2021

Table 14 provides a summary of the notable results from laboratory NH_x-N measurements taken during the 2020-2021 monitoring program.

Nitrogen as ammonia/ammonium results	Site
Median concentration in exceedance of the ANZG (2018) guideline level (samples taken during 2020-2021)	BWMD01, BWMD03, BWMD04, BWMD06, BWMD11, BWMD15, BWMD16
Number of sites recording one or more exceedance of the default guideline value in 2020	16
Number of sites recording one or more exceedance of the default guideline value in 2021	13
Maximum	0.64 mg/L (BWMD05, BWMD06, July 2020).
Minimum	<0.01 mg/L on 43 occasions at various sites over the monitoring period.

3.4.4 Total Phosphorus (TP)

The ANZG (2018) default guideline value (DGV) for total phosphorus (TP) in lowland rivers of south-west Western Australia is 0.065 mg/L.

2020 Results

During 2020, the concentration of total phosphorus ranged from a minimum of 0.01mg/L at BWMD22 in August to a maximum of 0.21 mg/L at BWMD24 in July (Figure 22). There were notable spikes in TP concentration in July with elevated results at BWMD05, BWMD06, BWMD09 and BWMD24. There were a number of sites that had median concentrations in exceedance of the ANZG (2018) guidelines level: BWMD06, BWMD09, BWMD24 and BWMD25. These results are consistent with what was observed in 2018-2019.

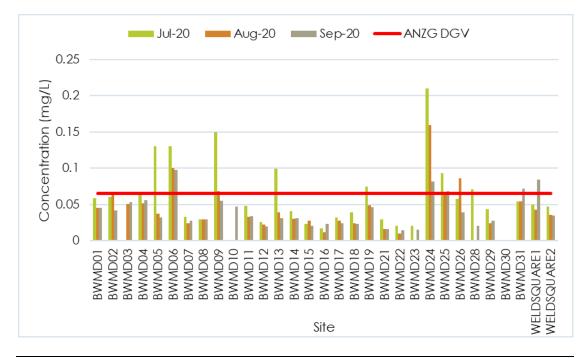


Figure 22: Total phosphorus concentration recorded at Bayswater Brook surface water sampling sites 2020

2021 Results

During 2021, the concentration of total phosphorus ranged from a minimum of 0.007 mg/L at BWMD16 in August to a maximum of 1.8 mg/L in September at BWMD06 (Figure 23 and Figure 24). There were notable spikes in TP concentration at BWMD03, BWMD04 and BWMD06 in September. There were a number of sites that had median concentrations in exceedance of the ANZG (2018) guidelines level: BWMD02, BWMD03, BWMD04, BWMD06, BWMD24 and BWMD25. Aside from the September spikes, these results are consistent with what was observed in 2018-2019.

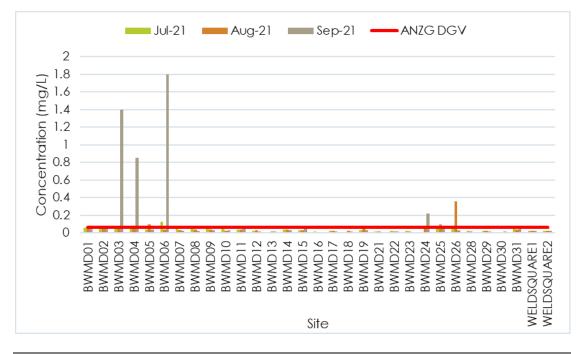


Figure 23: Total phosphorus concentration recorded at Bayswater Brook surface water sampling sites 2020

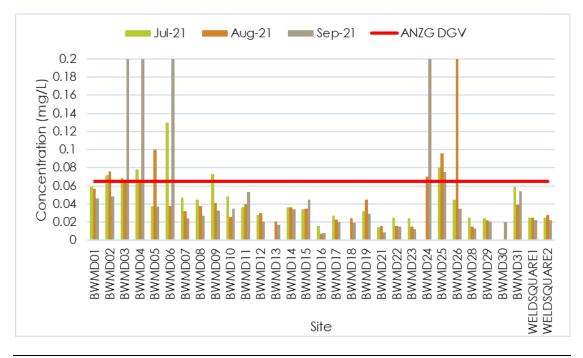


Figure 24: Total phosphorus concentration recorded at Bayswater Brook surface water sampling sites 2021 (enlarged – scale ends at 0.2)

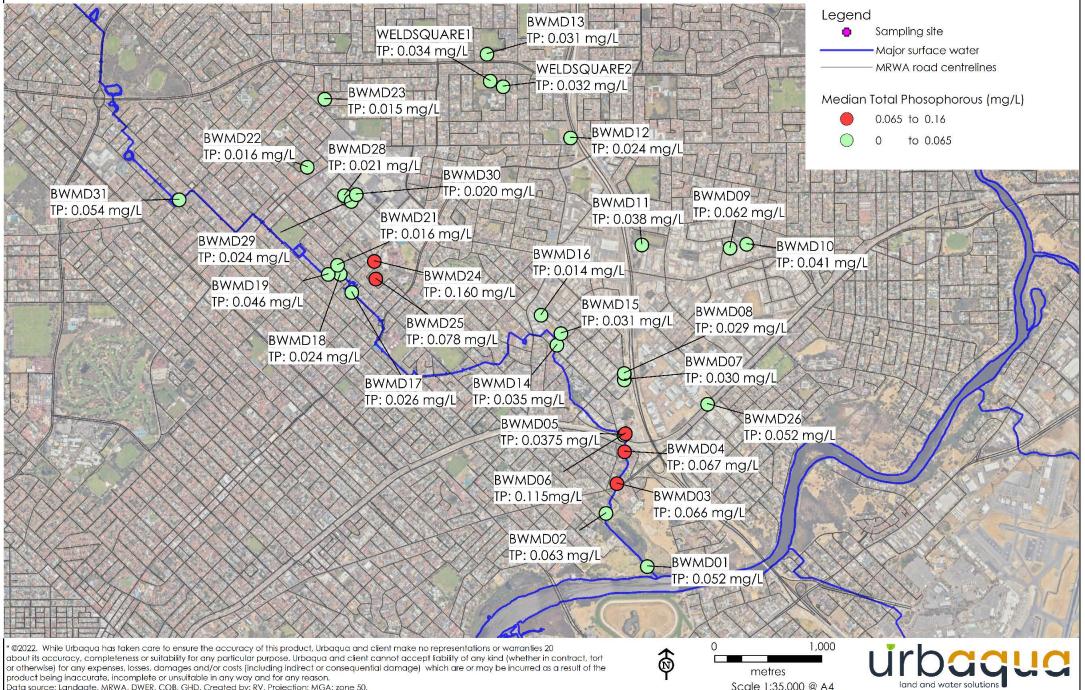

Table 15 provides a summary of the laboratory TP measurements taken during the 2020 and 2021 monitoring program.

Table 15: Total phosphorus concentratio	on results summary 2020-2021
---	------------------------------

Total phosphorus concentration results	Site
Median concentration in exceedance of ANZG (2018) guideline level (samples taken during 2020-2021)	BWMD03, BWMD04, BWMD06, BWMD24, BWMD25
Number of sites recording one or more exceedance of the default guideline value in 2020	12
Number of sites recording one or more exceedance of the default guideline value in 2021	9
Maximum	1.80 mg/L (BWMD06, September 2021)
Minimum	0.007 mg/L (BWMD16, August 2021)

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 25 - Median Total Phosphorous Concentration (2020-2021)

3.4.5 Soluble Reactive Phosphorus (SRP)

The ANZG (2018) default guideline value (DGV) for soluble reactive phosphorus (SRP) in lowland rivers of south-west Western Australia is 0.04 mg/L.

2020 Results

SRP concentrations during the 2020 monitoring program ranged from a minimum of 0.0025 mg/L (below the limit of reporting) at several locations and events to a maximum of 0.12 mg/L at BWMD24 in July. Only BWMD06 and BWMD24 recorded a median concentration in exceedance of the ANZG (2018) guidelines level, each with every event exceeding the guideline.

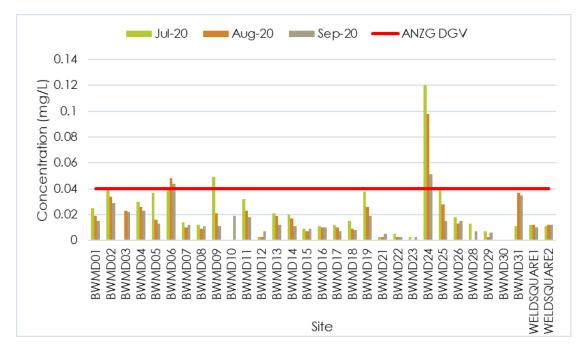


Figure 26: Soluble reactive phosphorus concentration recorded at Bayswater Brook surface water sampling sites 2020

2021 Results

The SRP concentration during the 2021 monitoring program ranged from a minimum <0.005 mg/L (the limit of reporting) at several sites/events to a maximum of 0.049 mg/L at BWMD02 in July. Only BWMD02 recorded a median concentration above the ANZG (2018) guideline levels in 2021.

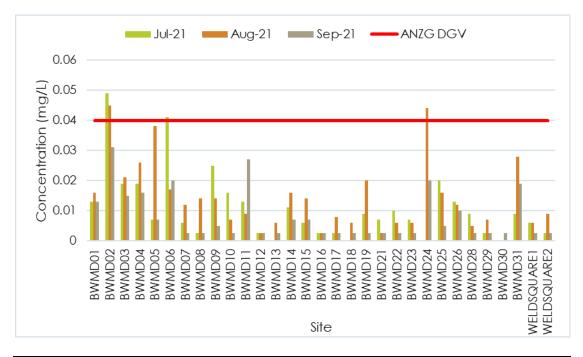


Figure 27: Soluble reactive phosphorus concentration recorded at Bayswater Brook surface water sampling sites 2021

Table 16 provides a summary of the laboratory SRP measurements taken during the 2018-2019 monitoring period.

Table 16: Soluble reactive phosphorus concentration results summary 2020-2021

Soluble reactive phosphorus concentration results	Site	
Median concentration in exceedance of the ANZG (2018) guidelines level (samples taken during 2020-2021)	BWMD06, BWMD24	
Number of sites recording one or more exceedance of the default guideline value in 2020	3	
Number of sites recording one or more exceedance of the default guideline value in 2021	3	
Maximum	0.12 mg/L (BWMD24, July 2020)	
Minimum	<0.005 mg/L (on 36 occasions over the two years)	

3.5 Metals in Water

Both total and soluble metals were monitored in the Bayswater Brook monitoring program in 2020 and 2021. Prior to the inclusion of soluble samples, only total metals were monitored from 2007 to 2010. Sampling for total metals has continued in conjunction with monitoring of soluble metals.

Soluble metals have been included in the monitoring program since 2011 and are a reasonable measure of the bioavailability of metal contaminants and the ecotoxicity risk to aquatic ecosystems. In this report soluble metals rather than total metals are used to determine exceedances of the ANZG (2018) toxicant trigger values and HMTVs as these are a good measure of the bioavailable fractions. Exceedances of toxicant trigger values and HMTVs by total metals is not considered as a large proportion may not be bioavailable.

pH affects the toxicity of aluminium and therefore the soluble aluminium concentrations are compared to the ANZG (2018) toxicant trigger value for a 95% level of species protection when the pH is greater than 6.5. For presentation purposes the samples with pH greater than 6.5 are shaded in the figures for soluble aluminium.

Water hardness affects the toxicity of other metals (chromium, copper, lead, nickel, and zinc). The ANZG (2018) toxicant trigger values for a 95% level of species protection for these metals are corrected for hardness to determine the HMTV with the algorithms for different metal species on an individual sample basis.

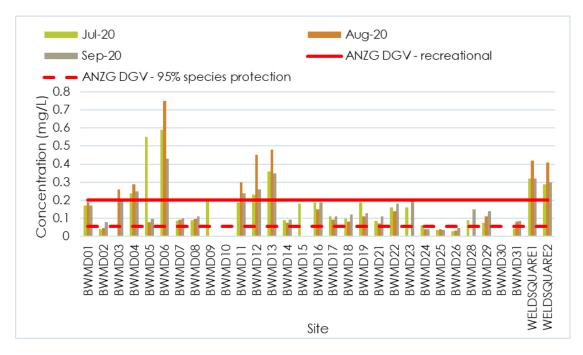
3.5.1 Aluminium (Al)

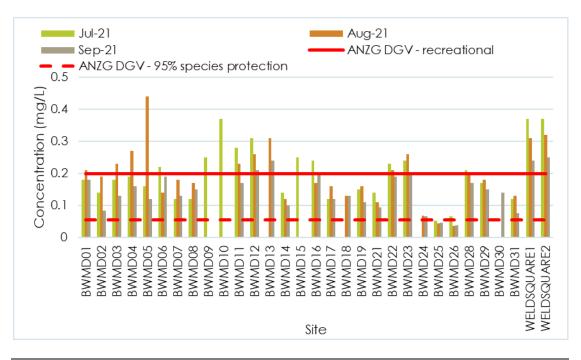
The ANZG (2018) toxicant trigger value for a 95% level of species protection for aluminium is 0.055 mg/L, which is applicable when pH is greater than 6.5. The ANZG (2018) recreational purposes guideline value is 0.2 mg/L. There is no HMTV for aluminium.

2020 Results

Soluble aluminium concentrations during the 2020 monitoring program ranged from a minimum of 0.03 mg/L at BWMD26 in July to a maximum of 0.75 mg/L at BWMD06 in August (Figure 28). All sites with a pH above 6.5 at the time of sampling exceeded the ANZG (2018) guideline for 95% species protection on all sampling events with the exception of BWMD02 in July. BWMD03, BWMD04, BWMD06, BWMD12, BWMD13, and both WELDSQUARE sites exceeded the ANZG (2018) recreational guidelines on all sampling occasions.

BWMD03, BWMD04, BWMD06, BWMD11, BWMD12, BWMD13, WELDSQUARE01 and WELDSQUARE02 had median concentrations in exceedance of the ANZG (2018) recreational guideline.




Figure 28: Soluble aluminium concentration recorded at Bayswater Brook surface water sampling sites 2020

2021 Results

The concentration of soluble aluminium during the 2021 monitoring program ranged from a minimum of 0.037 mg/L at BWMD26 in August to a maximum of 0.44 mg/L at BWMD05 in August. All sites with a pH above 6.5 exceeded the ANZG (2018) guidelines for 95% species protection with the exception of BWMD25 in September. BWMD09, BWMD10, BWMD12, BWMD13, BWMD15, BWMD20, BWMD27, WELDSQUARE01 and WELDSQUARE02 exceeded the ANZG (2018) recreational guidelines on all sampling events.

BWMD09, BWMD10, BWMD11, BWMD12, BWMD13, BWMD15, BWMD22, BWMD23, WELDSQUARE01 and WELDSQUARE02 had median concentrations in exceedance of the ANZG (2018) recreational guideline.

Figure 29: Soluble aluminium concentration recorded at Bayswater Brook surface water sampling sites 2021

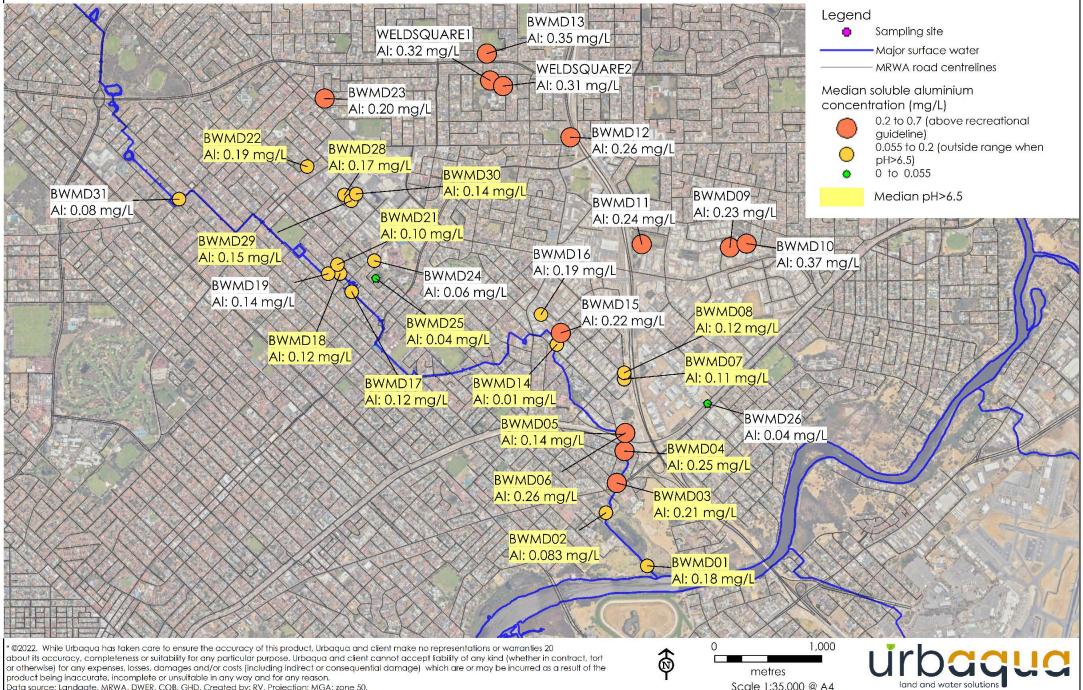

Table 17 provides a summary of the notable results from laboratory aluminium measurements taken during the 2020-2021 monitoring program.

Table 17: Soluble aluminium concentration results summary 2020-2021

Soluble aluminium concentration results	Site
≥ 50% of samples taken during 2020-2021 exceeded the ANZG (2018) toxicant trigger for a 95% level of species protection (pH > 6.5)	BWMD02, BWMD03, BWMD04, BWMD05, BWMD06, BWMD07, BWMD08, BWMD11, BWMD12, BWMD16, BWMD17, BWMD18, BWMD19, BWMD21, BWMD22, BWMD29, BWMD30.
All samples in exceedance of the ANZG (2018) toxicant trigger for a 95% level of species protection (pH > 6.5)	None
All samples in exceedance of the ANZG (2018) recreational guideline level	BWMD12, BWMD13, WELDSQUARE01 and WELDSQUARE02
Maximum	0.75 mg/L (BWMD06, August 2020)
Minimum	0.03 mg/L (BWMD26, July 2020)

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 30 - Median Soluble Aluminium Concentration (2020-2021)

3.5.2 Chromium

The ANZG (2018) toxicant trigger value for a 95% level of species protection for chromium is 0.001 mg/L and the ANZG (2018) recreational purposes guideline value is 0.05 mg/L. The HMTV varies with water hardness at the time of sampling and was calculated on sample-by-sample basis.

2020 Results

The concentration of soluble chromium during the 2020 monitoring program ranged from a minimum of 0.0004 mg/L at BWMD24 and BWMD25 in September to a maximum of 0.027 mg/L at BWMD16 in July (Figure 31). Exceedances of the HMTV were observed at BWMD09 and BWMD15 in July and BWMD16 during all events.

2021 Results

The concentration of soluble chromium during the 2021 monitoring program ranged from a minimum of 0.0006 mg/L at BWMD26 during all events and BWMD21 in September to a maximum of 0.021 mg/L at BWMD16 in August (Figure 32). Exceedances of the HMTV were observed at BWMD15 in July and BWMD16 during all events.

Table 18 provides a summary of the notable results from laboratory chromium measurements taken during the 2020-2021 monitoring program.

Soluble chromium concentration results	Site
≥ 50% of samples in exceedance of HMTV (highlighted in Figure 33)	BWMD16
No exceedances of HMTV	All sites except BWMD09, BWMD15, BWMD16
Number of sites with one or more exceedance of HMTV in 2020	3
Number of sites with one or more exceedance of HMTV in 2021	2
Maximum	0.027 mg/L (BWMD16, July 2020)
Minimum	0.0004 mg/L (BWMD24, BWMD25, September 2020)

Table 18: Soluble chromium concentration results summary 2020-2021

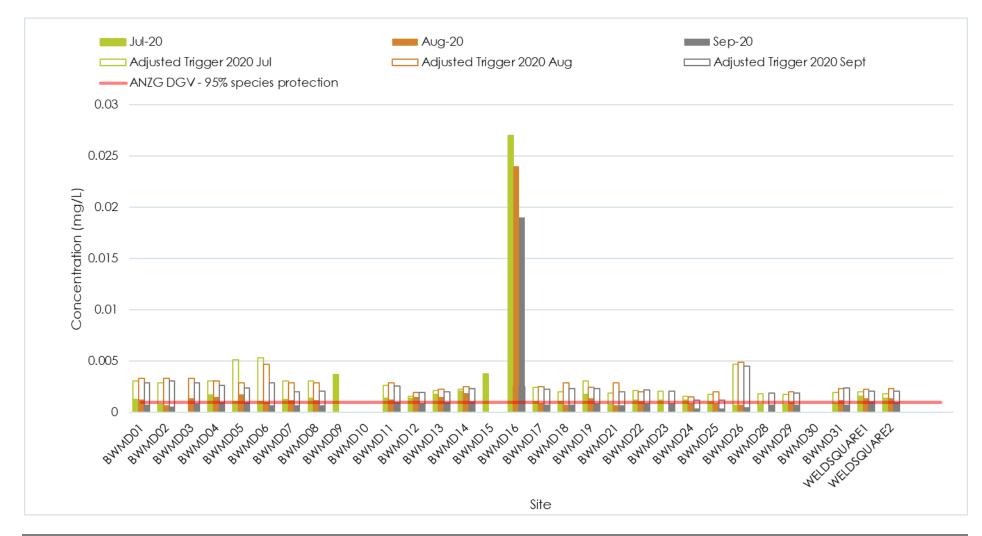


Figure 31: Soluble chromium concentration recorded at Bayswater Brook surface water sampling sites 2020

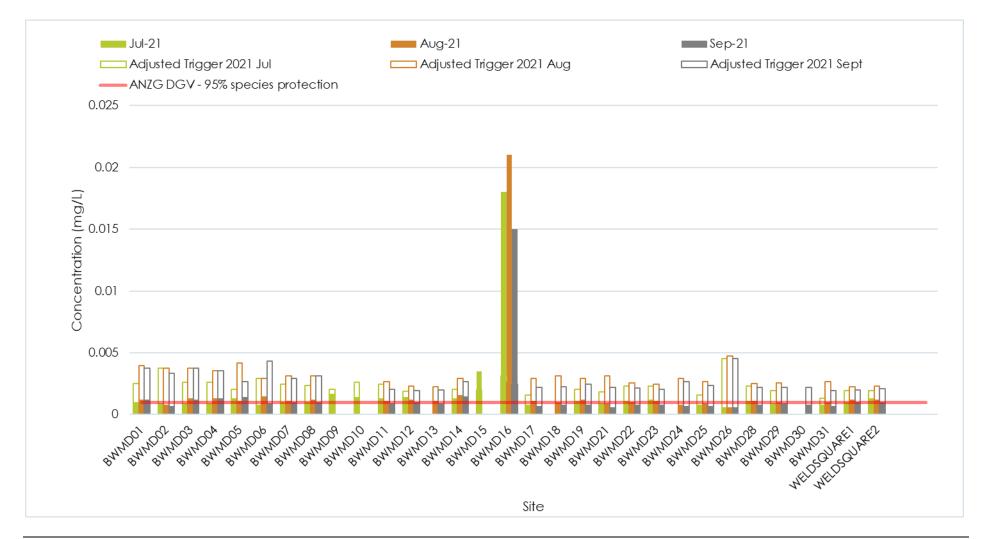
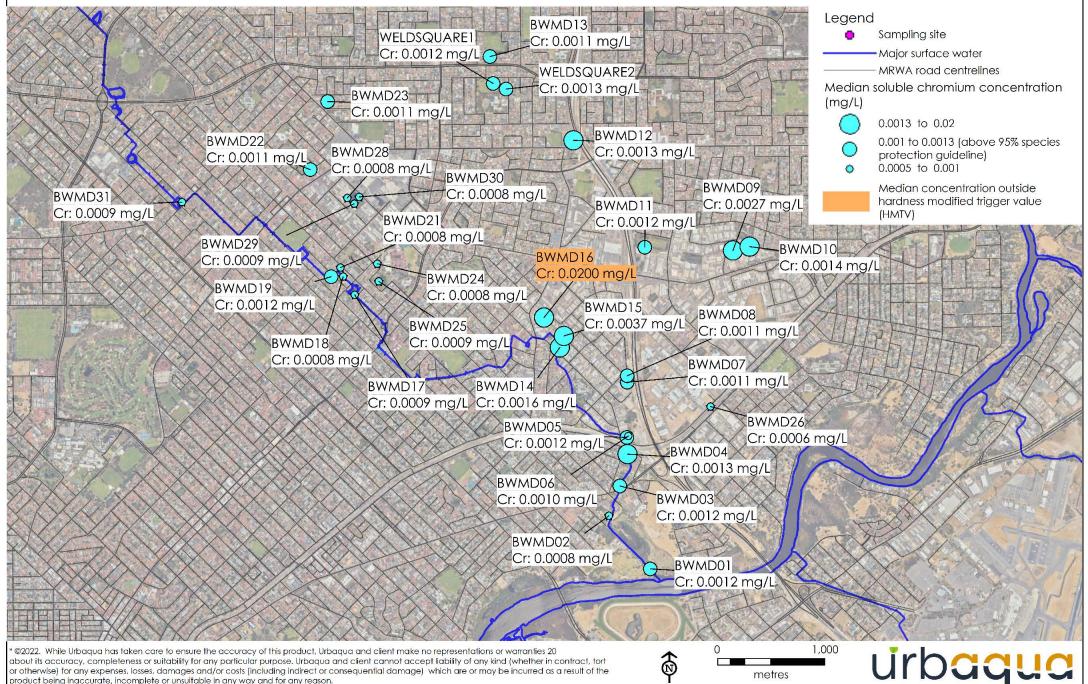



Figure 32: Soluble chromium concentration recorded at Bayswater Brook surface water sampling sites 2021

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 33 - Median soluble chromium (Cr) concentration (2020-2021)

Scale 1:35.000 @ A4

3.5.3 Copper

The ANZG (2018) toxicant trigger value for a 95% level of species protection for copper is 0.0014 mg/L and the recreational purposes guideline value is 1.0 mg/L. The HMTV varies with water hardness at the time of sampling and was calculated on a sample-by-sample basis.

2020 Results

The concentration of soluble copper during the 2020 monitoring program ranged from a minimum of <0.0001 mg/L (the limit of reporting) at BWMD sites 11,12,13 and 31 as well as WELDSQUARE2 in September to a maximum of 0.0098 mg/L at BWMD09 in July (Figure 34). Nine exceedances of the HMTV values occurred throughout the year. BWMD24 exceeded the HMTV values at every event. July exceedances include: BWMD09, BWMD12 and WELDSQUARE2. August exceedances include BWMD01 and WELDSQUARE1. BWMD25 exceeded the HMTV value in September.

2021 Results

The concentration of soluble copper during the 2021 monitoring program ranged from a minimum of 0.0006 mg/L at BWMD16 in August to a maximum of 0.011 mg/L at WELDSQUARE1 in August (Figure 35). Fourteen (14) exceedances of HMTV values occurred throughout the year. Most occurred in July: BWMD sites 17, 19, 21, 25, 29 and 31 as well as both WELDSQUARE sites. In August, BWMD12 and WELDSQUARE1 exceeded HMTV values. In September, BWMD01, BWMD02, BWMD17 and BWMD18 exceeded HMTV values.

Table 19 provides a summary of the notable results from laboratory copper measurements taken during the 2020-2021 monitoring program.

Soluble copper concentration results	Site
≥ 50% of the samples taken during 2020-2021 in exceedance of the HMTV (highlighted in Figure 36)	BWMD24, WELDSQUARE1
No exceedance of HMTV	BWMD03, BWMD04, BWMD05, BWMD06, BWMD07, BWMD08, BWMD10, BWMD11, BWMD13, BWMD14, BWMD15, BWMD16, BWMD 22, BWMD23, BWMD26, BWMD30.
Number of sites with one or more exceedance of HMTV in 2020	7
Number of sites with one or more exceedance of HMTV in 2021	12
Maximum	0.011 mg/L (WELDSQUARE1 in August 2021)
Minimum	<0.0001 mg/L (BWMD11, BWMD12, BWMD13, BWMD31, WELDSQUARE2, in September 2020)

Table 19: Soluble copper concentration results summary 2020-2021

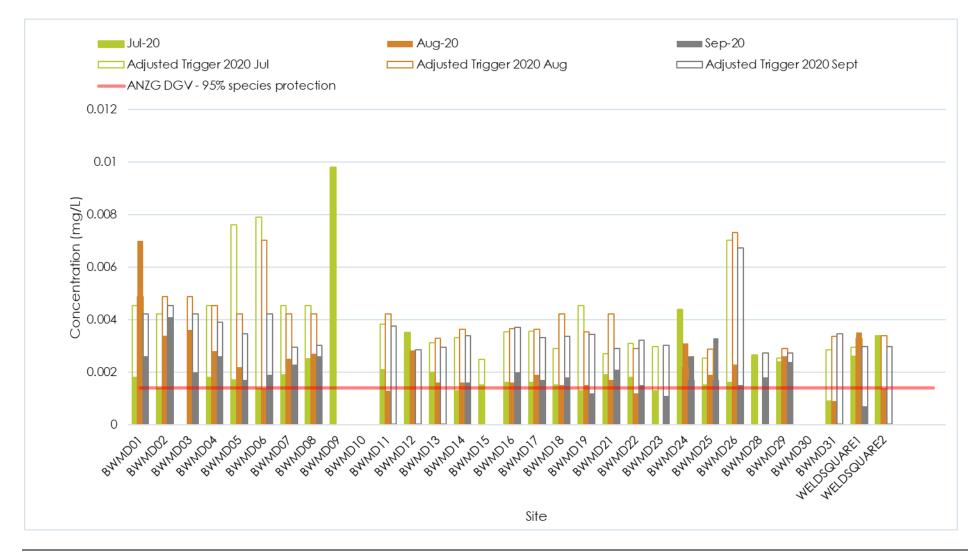


Figure 34: Soluble copper concentration recorded at Bayswater Brook surface water sampling sites 2020

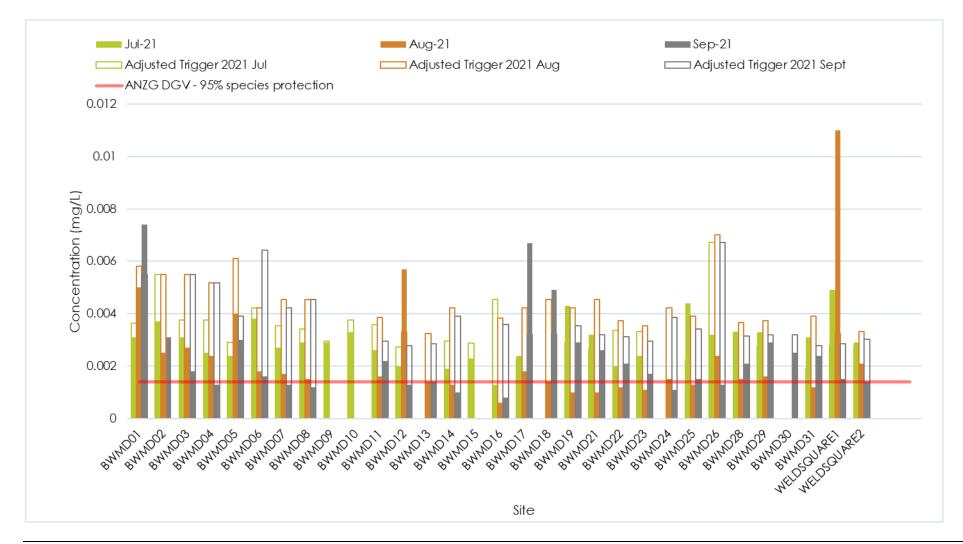
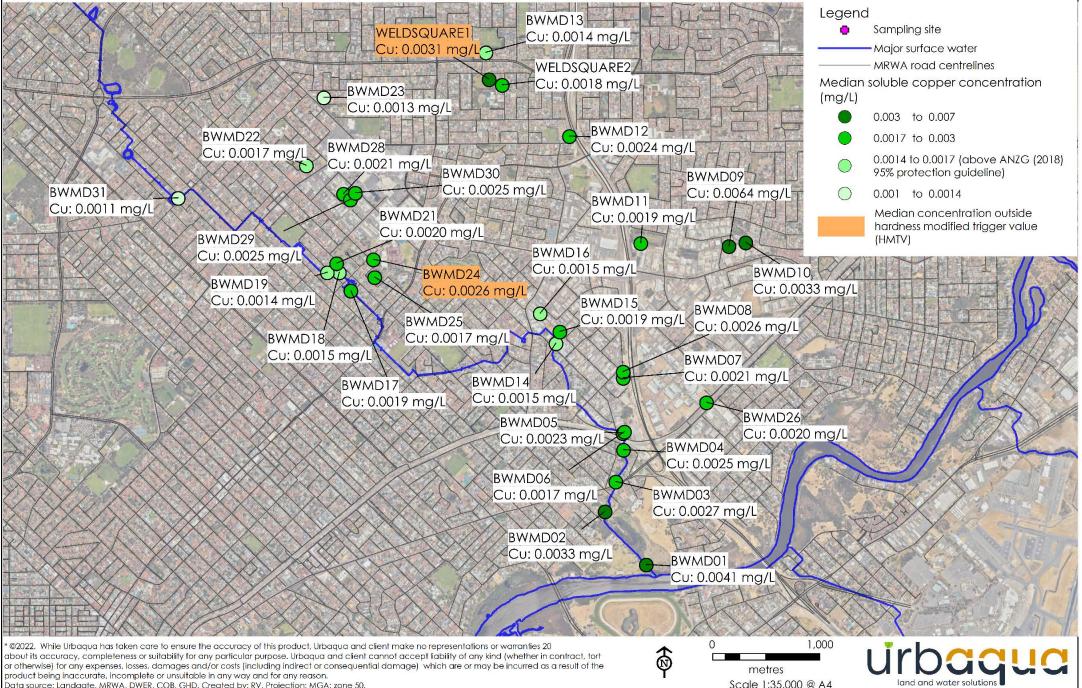



Figure 35: Soluble copper concentration recorded at Bayswater Brook surface water sampling sites 2021

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 36 - Median soluble copper (Cu) concentration (2020-2021)

3.5.4 Lead

The ANZG (2018) toxicant trigger value for a 95% level of species protection for lead is 0.0034 mg/L and the ANZG (2018) recreational purposes guideline value is 0.05 mg/L. The HMTV varies with water hardness at the time of sampling and was calculated on a sample-by-sample basis.

2020 Results

The concentration of soluble lead during the 2020 monitoring program ranged from a minimum of 0.00005 mg/L at BWMD26 in July and August to a maximum of 0.0051 mg/L at BWMD25 in September (Figure 37). There was a single exceedance of the HMTV coinciding with the local maxima at BWMD25 in September.

2021 Results

The concentration of soluble lead during the 2021 monitoring program ranged from a minimum of 0.00005 mg/L at BWMD26 in August and September to a maximum of 0.002 mg/L at BWMD09 in July (Figure 38). There were no exceedances of the HMTV.

Table 20 provides a summary of the notable results from laboratory lead measurements taken during the 2020-2021 monitoring program.

Soluble lead concentration results	Site
\geq 50% of samples taken during 2020-2021 in exceedance of the HMTV	None
No exceedances of HMTV	All except for BWMD25
Number of sites with one or more exceedance of HMTV in 2020	1
Number of sites with one or more exceedance of HMTV in 2021	0
Maximum	0.0051 mg/L (BWMD25, September 2020)
Minimum	0.00005 mg/L (BWMD26, July 2020, August 2020 and 2021, September 2021)

Table 20: Soluble lead concentration results summary 2020-2021

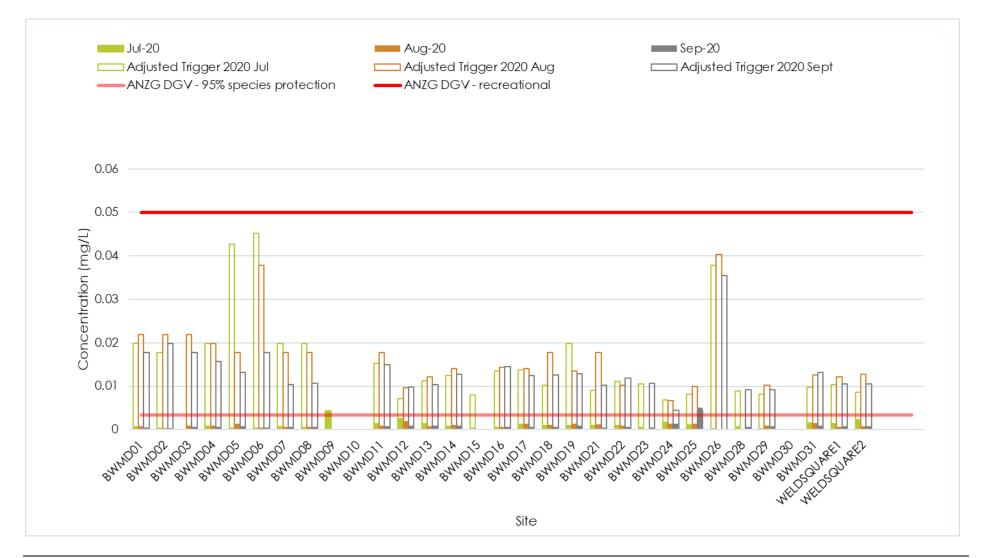


Figure 37: Soluble lead concentration recorded at Bayswater Brook surface water sampling sites 2020

Figure 38: Soluble lead concentration recorded at Bayswater Brook surface water sampling sites 2021

3.5.5 Nickel

The ANZG (2018) toxicant trigger value for a 95% level of species protection for nickel is 0.011 mg/L and the ANZG (2018) recreational purposes guideline value is 0.1 mg/L. The HMTV varies with water hardness at the time of sampling and was calculated on a sample-by-sample basis.

2020 Results

The concentration of soluble nickel during 2020 ranged from a minimum of <0.0005 mg/L (LOR) at BWMD23 and BWMD31 in July and BWMD22 in September to a maximum of 0.24 mg/L at BWMD16 in both August and September (Figure 39). All samples at BWMD16 exceeded the HMTV, as in 2018-2019. No other site exceeded the HMTV.

2021 Results

The concentration of soluble nickel during 2021 ranged from a minimum of <0.0005 mg/L (LOR) at BWMD31 in July and then at BWMD sites 17, 18, 21, 22, 23, 28, 29 and 30 in September, to a maximum of 0.25 mg/L at BWMD16 in August (Figure 40). All samples at BWMD16 exceeded the HMTV. No other site exceeded the HMTV.

Table 21 provides a summary of the notable results from laboratory nickel measurements taken during the 2020-2021 monitoring program.

Soluble nickel concentration results	Site
≥ 50% of samples taken during 2020-2021 in exceedance of HMTV (highlighted in Error! Reference source not found. 41)	BWMD16
No exceedances of HMTV	All sites except BWMD02 and BWMD16
Number of sites with one or more exceedance of HMTV in 2020	1
Number of sites with one or more exceedance of HMTV in 2021	2
Maximum	0.25 mg/L (BWMD16, August 2021)
Minimum	<0.0005 mg/L (LOR) (several sites)

Table 21: Soluble nickel concentration results summary 2020-2021

Figure 39: Soluble nickel concentration recorded at Bayswater Brook surface water sampling sites 2020

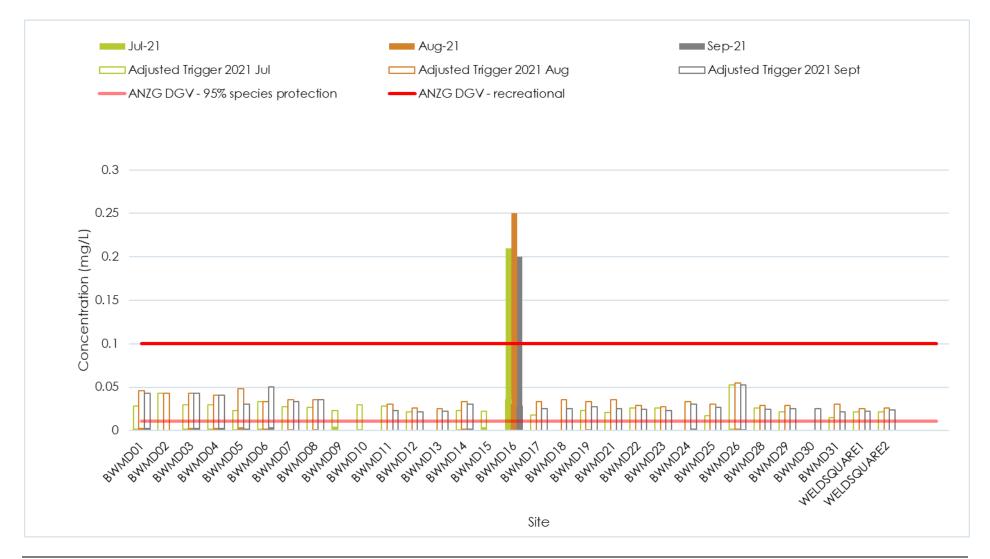
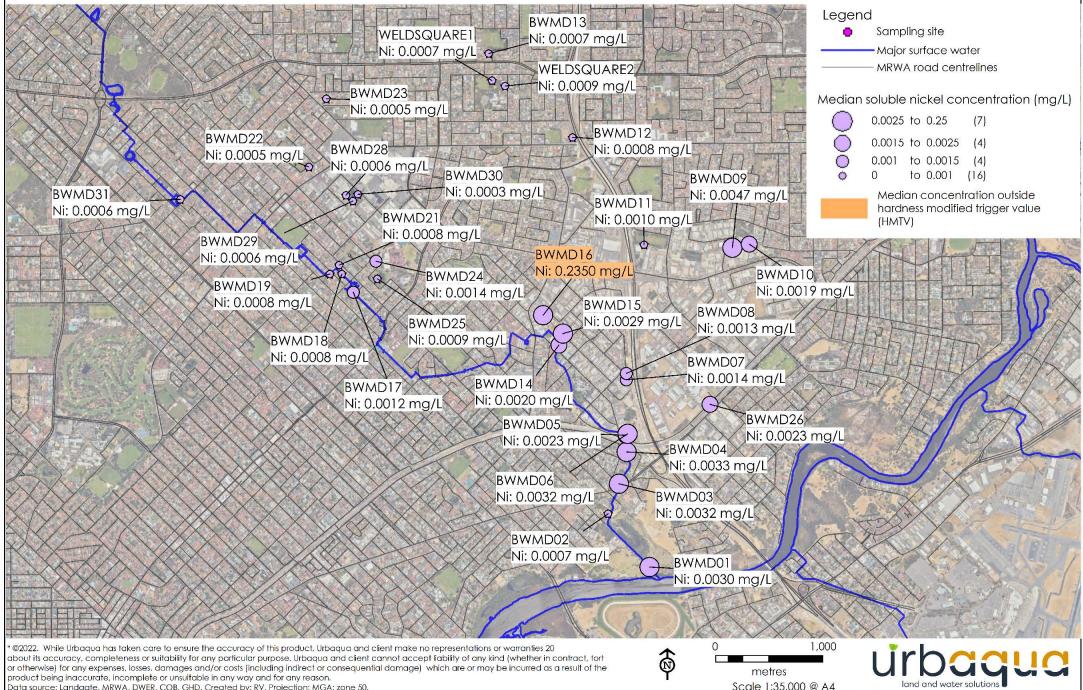



Figure 40: Soluble nickel concentration recorded at Bayswater Brook surface water sampling sites 2021

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 41 - Median soluble nickel (Ni) concentration (2020-2021)

3.5.6 Zinc

The ANZG (2018) toxicant trigger value for a 95% level of species protection for zinc is 0.008 mg/L and the ANZG (2018) recreational purposes guideline value is 5 mg/L. The HMTV varies with water hardness at the time of sampling and was calculated on a sample-by-sample basis.

2020 Results

The concentration of soluble zinc during 2020 ranged from a minimum of 0.005 mg/L at BWMD19 in July to a maximum of 0.037 mg/L at BWMD26 in July (Figure 42). All sites recorded exceedances of the HMTV except for BWMD20, BWMD27 and BWMD30 which were not tested. BWMD sites 01, 03, 04, 05, 06, 07, 08, 09, 12, 13, 14, 17, 21, 24, 25, 26 and 29 as well as WELDSQUARE1 and WELDSQUARE2 all exceeded the HMTV on all sampling occasions.

2021 Results

The concentration of soluble zinc during 2021 ranged from a minimum of 0.018 mg/L at BWMD16 in September to a maximum of 0.59 mg/L at BWMD15 in July (Figure 43). As in 2020, all sites recorded exceedances of the HMTV except BWMD20 and BWMD27 which were not tested. BWMD sites 01, 03, 04, 05, 06, 07, 11, 12, 13, 14, 15, 17, 18, 19, 22, 23, 25, 26, 28, 29, 30 and 31 as well as both WELDSQUARE1 and WELDSQUARE2 exceeded the HMTV on all sampling locations.

Table 22 provides a summary of the notable results from laboratory zinc measurements taken during the 2020-2021 monitoring program.

Soluble zinc concentration results	Site
≥ 50% of samples taken during 2020-2021 in exceedance of HMTV (highlighted in Figure 44)	All
No exceedances of HMTV	None
Number of sites with one or more exceedance of HMTV in 2020	31
Number of sites with one or more exceedance of HMTV in 2021	31
Maximum	0.59 mg/L (BWMD15, July 2021)
Minimum	0.005 mg/L (BWMD19, July 2020)

Table 22: Soluble zinc concentration results summary 2020-2021

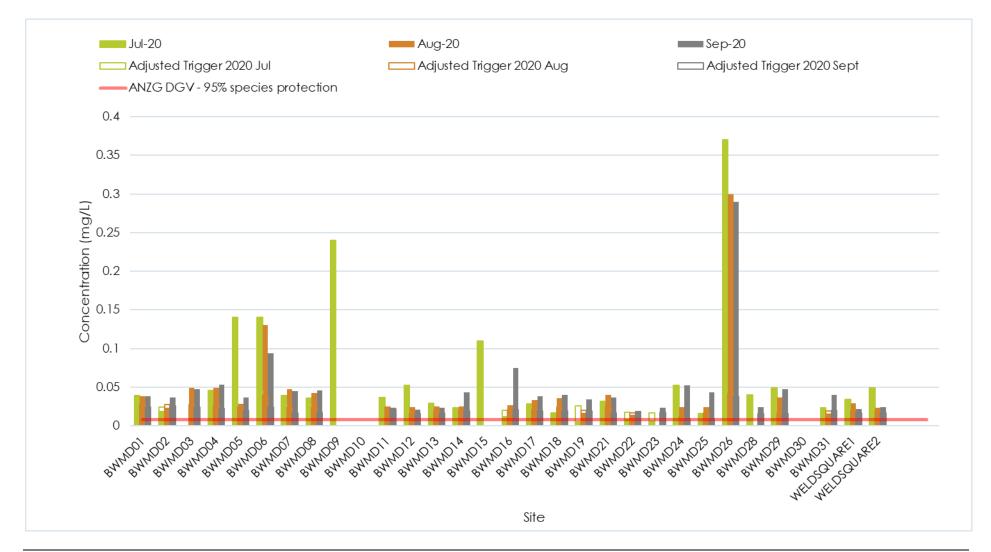


Figure 42: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling sites 2020

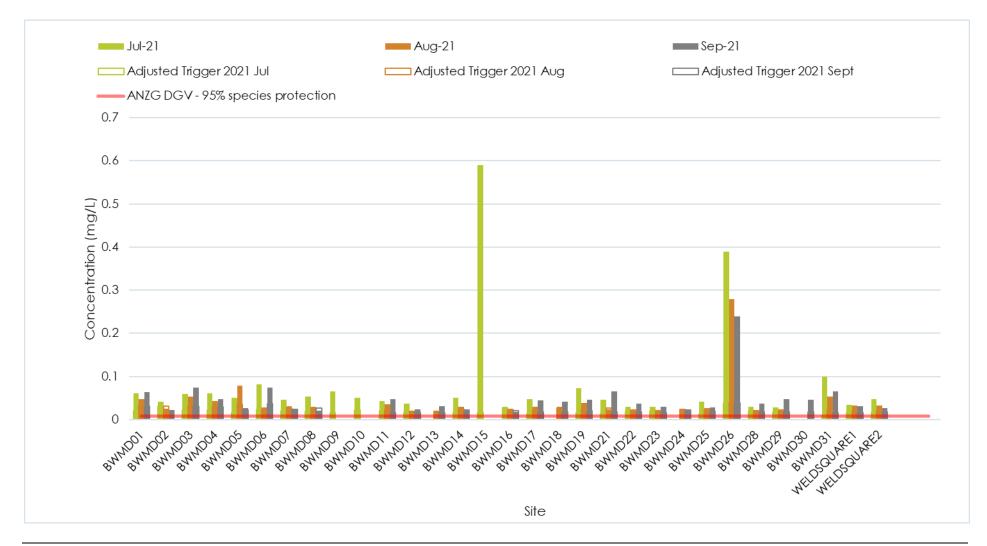
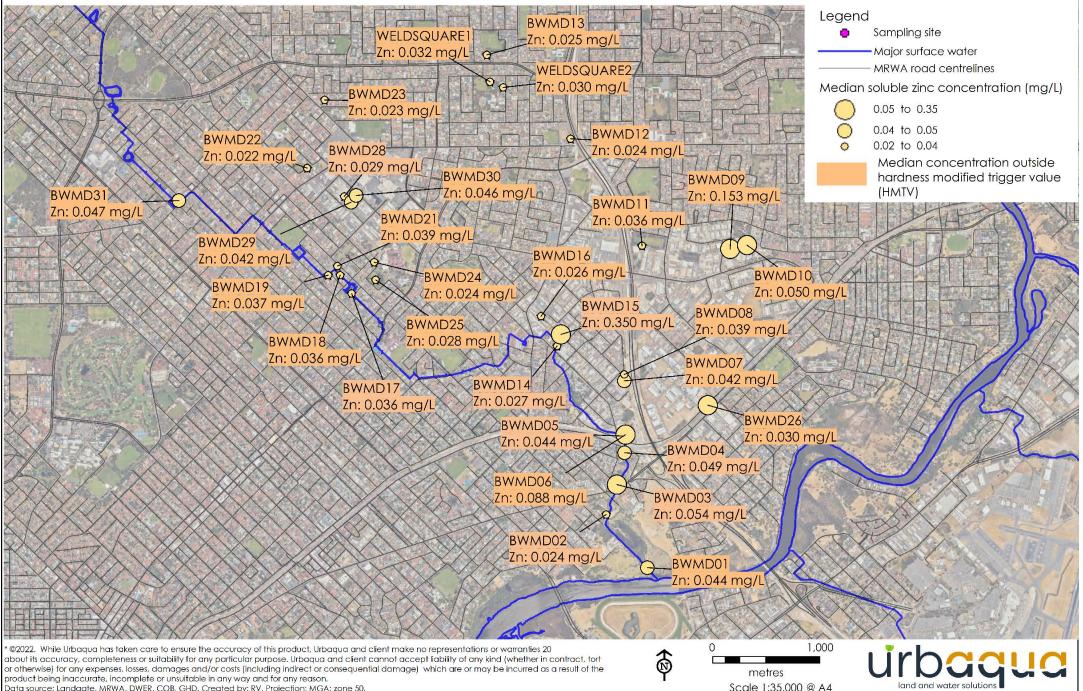



Figure 43: Soluble zinc concentrations recorded at Bayswater Brook surface water sampling sites 2021

City of Bayswater - Bayswater Brook water and sediment quality monitoring 2020-2021 Figure 44 - Median soluble zinc (Zn) concentration (2020-2021)

Data source: Landgate, MRWA, DWER, COB, GHD. Created by: RV. Projection: MGA: zone 50.

3.6 Metals in Sediment

Sediment samples were collected and analysed for a suite of metals during the final monitoring monthly event of each year from 2012 to 2021. Sediment samples were collected from four sampling sites that were identified as hotspots for metals on the basis of elevated metals concentrations in water samples. The full metals in sediment results from the 2020-2021 monitoring program have been included in Appendix A.

Sediment samples were compared to the ANZG (2018) toxicant default guideline values (DGVs).

3.6.1 Aluminium (Al)

There is no guideline for aluminium in sediment. The DWER have previously referred to the Canadian Sediment Quality Guideline of 14,900 mg/kg for aluminium (Canadian Council of Ministers of the Environment 2002). In the absence of a local guideline the Canadian guideline is used for comparative purposes.

2020 Results

The concentration of aluminium in sediment ranged from a minimum of 1450 mg/kg at BWMD16 to 5250 mg/kg at BWMD26. No samples exceeded the Canadian guideline. In comparison, no samples exceeded the Canadian guideline in 2016, 2017 or 2019 either. There was one exceedance at BWMD26 in 2018.

2021 Results

The concentration of aluminium in sediment ranged from a minimum of 2110 mg/kg at BWMD24 to 12500 mg/kg at BWMD26. No samples exceeded the Canadian guideline.

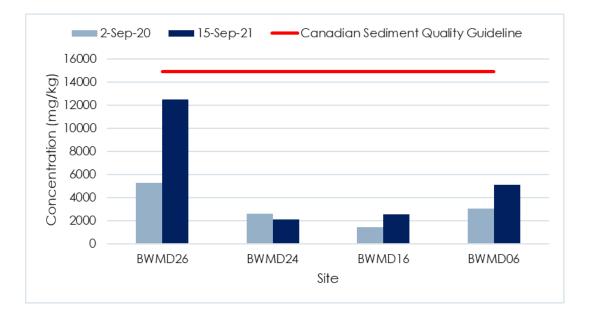


Figure 45: Aluminium concentration in sediment recorded at Bayswater Brook sediment sampling sites 2020-2021

3.6.2 Chromium

The ANZG (2018) DGV concentration for chromium in sediment is 80 mg/kg and the GV-high concentration is 370 mg/kg.

2020 Results

The concentration of chromium in sediment ranged from a minimum of 3.6 mg/kg at BWMD06 to a maximum of 9.2 mg/kg at BWMD24. No samples exceeded the DGV or GV-high concentrations. No samples from 2016-2019 exceeded these guidelines either.

2021 Results

The concentration of chromium in sediment ranged from a minimum of 5.4 mg/kg at BWMD06 to a maximum of 44 mg/kg at BWMD26. No samples exceeded the DGV or GV-high concentrations.

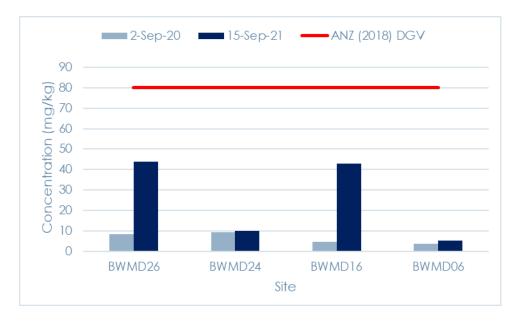


Figure 46: Chromium concentration in sediment recorded at Bayswater Brook sediment sampling sites 2020-2021

3.6.3 Copper

The ANZG (2018) DGV concentration for copper in sediment is 65 mg/kg and the GV-high concentration is 270 mg/kg.

2020 Results

The concentration of copper in sediment ranged from a minimum of 14 mg/kg at BWMD06 to a maximum of 61 mg/kg at BWMD24. No value exceeded the DGV or GV-High concentrations.

2021 Results

The concentration of copper in sediment ranged from a minimum of 16 mg/kg at 55 mg/kg at BWMD26. No sites exceeded the DGV or GV-high concentrations.

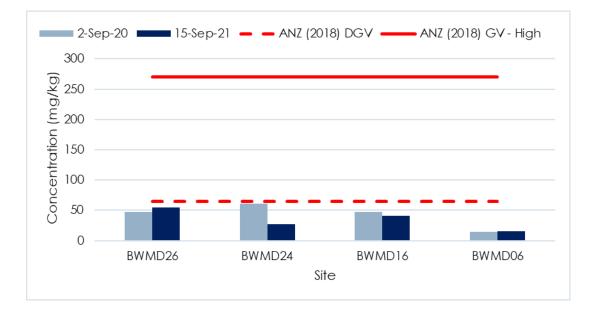


Figure 47: Copper concentration in sediment recorded at Bayswater Brook sediment sampling sites 2020-2021

3.6.4 Lead

The ANZG (2018) DGV concentration for lead in sediment is 50 mg/kg and the GV-high concentration is 220 mg/kg.

2020 Results

The concentration of lead in sediment ranged from a minimum of 8 mg/kg at BWMD16 to a maximum of 42 mg/kg at BWMD06. No exceedances of the DGV triggers were observed (Figure 48).

2021 Results

The concentration of lead in sediment ranged from a minimum of 19 mg/kg at BWMD16 to a maximum of 72 mg/kg at BWMD26. BWMD26 is the only exceedance of the DGV trigger.

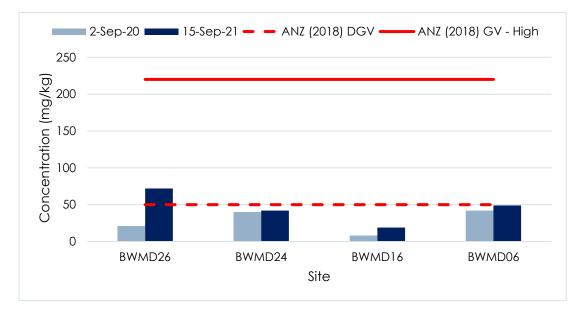


Figure 48: Lead concentration in sediment recorded at Bayswater Brook sediment sampling sites 2020-2021

3.6.5 Nickel

The ANZG (2018) DGV concentration for nickel in sediment is 21 mg/kg and the GV-high concentration is 52 mg/kg.

2020 Results

The concentration of nickel in sediment ranged from a minimum of 2.5 mg/kg at BWMD06 to a maximum of 16 mg/kg at BWMD16. No samples exceeded the DGV or GV-high concentrations. Similarly, these triggers were not exceeded in 2016-2019.

2021 Results

The concentration of nickel in sediment ranged from a minimum of 2.8 mg/kg at BWMD24 to a maximum of 390 mg/kg at BWMD16. This maximum was in exceedance of both the DGV and GV-high triggers (Figure 49).

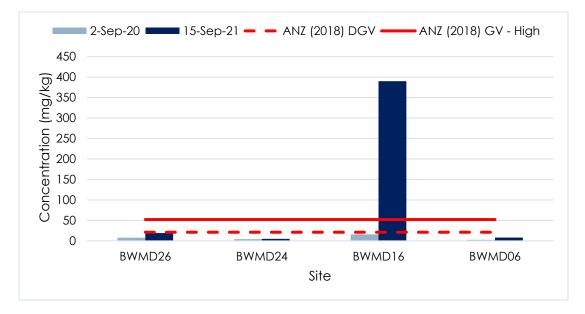


Figure 49: Nickel concentration in sediment recorded at Bayswater Brook sediment sampling sites 2020-2021

3.6.6 Zinc

The ANZG (2018) DGV concentration for zinc in sediment is 200 mg/kg and the GV-high concentration is 410 mg/kg.

2020 Results

The concentration of zinc in sediment ranged from a minimum of 41 mg/kg at BWMD06 to a maximum of 1000 mg/kg at BWMD26. This maximum exceeds both the DGV and GV-High triggers. BWMD24 exhibited a concentration of 210 mg/kg which exceeds the DGV trigger. This is similar to results from 2016-2019.

2021 Results

The concentration of zinc in sediment ranged from a minimum of 72 mg/kg at BWMD06 to a maximum of 1600 mg/kg at BWMD26. This maximum was the only exceedance, greater than both the DGV and GV-high triggers (Figure 50).

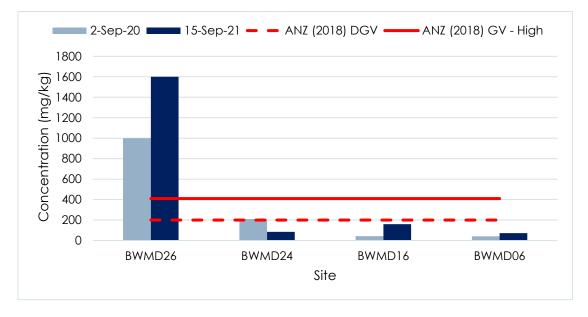


Figure 50: Zinc concentration in sediment recorded at Bayswater Brook sediment sampling sites 2020-2021

4 ENVIRONMENTAL HEALTH ASSESSMENT

A separate investigation was conducted to assess microbiological parameters in the Bayswater Brook area over the course of 2019-2021. The results and analysis of this can be found in Appendix C.

The conclusions from the 2019-2021 report are as follows:

The environmental health sampling program revealed concentrations of Thermotolerant Coliforms and Enterococci that were above the default guideline values for secondary contact in a number of locations within the Bayswater Brook. While the concentrations are elevated, the results from this sampling alone cannot provide insight into the source of contamination which may be related to sewage discharge or more likely plant and animal sources.

5 DISCUSSION

The following sections provide discussion on the physio-chemical, nutrients, metals and sediment quality sampling that was undertaken in 2020 and 2021.

5.1 Physio-chemical

The pH measured at the Bayswater Brook catchment during the 2020-2021 sampling period was generally neutral, tending towards slightly acidic. This is similar to what has been seen in previous years. Lower pH levels were recorded at the sites further upstream in the catchment (Figure 5) and became more neutral towards the Bayswater Brook outlet into the Swan River. There was one highly basic reading at BWMD26 in September of 2020 with a pH of 9.13. Field notes state there was algae present at this time. There is a positive correlation in between basic pH levels and algae presence.

The median electrical conductivity (EC) recorded across the study area was in exceedance of the ANZG (2018) guideline range, suggesting that the majority of sites within the catchment reflect slightly brackish conditions. EC appeared to be slightly higher at sites that were downstream of the industrial area (Figure 8). Only five sites recorded EC measurements within the ANZG (2018) guideline range on any occasion; BWMD09, BWMD10, BWMD24, BWMD25 and BWMD31. All other sites were consistently above of the guideline levels.

Dissolved oxygen is subject to diurnal and seasonal variation, with concentrations predominantly affected on a daily basis by biogeochemical processes, atmospheric exchange, and water temperature variations (Connell and Miller 1984). Low dissolved oxygen concentrations may adversely affect aquatic biota that depend on oxygen for functioning and may also result in increased toxicity of several contaminants (zinc, lead, copper, ammonia) (ANZG 2018).

The median dissolved oxygen (DO) concentration recorded across the study area was below the ANZG (2018) guidelines advisable range at the majority of the sampling sites.

Most of the sites that recorded a median DO concentration within the guideline range were located along the Bayswater Brook, aside from BWMD08 and BWMD28, while the lowest median DO concentrations were measured at BWMD09 and BWMD10, as well as northernmost sites around the Weld Square living stream. The only site to record a median DO% above ANZG (2018) guidelines was site BWMD25, which exceeded the guidelines on 3 separate occasions. These sites often had little flow or were stagnant, so a lower DO% is expected. Compared to 2018-2019, BWMD25 has a significantly higher DO, while BWMD09 and BWMD10 have had a significant decrease. This should be monitored closely in future years.

Total suspended solids are a measure of silt, phytoplankton and organic matter (GHD 2016). Phosphorus, metals and other contaminants commonly bind to sediment and are transported with the particulate matter in stormwater runoff and drainage. As the monitoring program did not target rainfall events the sampling events were typically conducted under base flow conditions. The highest TSS concentrations were recorded at BWMD06, BWMD03 and BWMD04 during the September 2021 sampling events with concentrations of 88 mg/L, 79 mg/L and 53 mg/L respectively. TSS was also high at BWMD26 in August of 2021. Both of these periods were unseasonably dry with minimal to no rainfall during and preceding sampling events. It is recommended to closely monitor TSS in this area in future.

The field notes suggested that there was a pollution event on this occasion in September of 2021. The DWER pollution response unit was called and investigated this further. They used Methylene Blue Active Substances to test for surfactant discharge. Results of this testing are provided in Appendix D.

A summary of the sites where physico-chemical measurements exceeded their respective default guideline values or range is provided in Table 23.

Site	Median in exceedance of default guideline value or range										
	рН	DO	EC	TSS							
BWMD01	-	-	Х	-							
BWMD02	-	-	Х	-							
BWMD03	-	-	Х	Х							
BWMD04	-	-	Х	-							
BWMD05	-	-	Х	-							
BWMD06	-	-	Х	Х							
BWMD07	-	Х	Х	-							
BWMD08	-	-	Х	-							
BWMD09	Х	Х	Х	Х							
BWMD10	Х	Х	-	-							
BWMD11	Х	Х	Х	-							
BWMD12	Х	Х	Х	-							
BWMD13	Х	Х	Х	-							
BWMD14	-	-	Х	-							
BWMD15	Х	Х	Х	-							
BWMD16	Х	Х	Х	-							
BWMD17	-	-	Х	-							
BWMD18	-	Х	Х	-							
BWMD19	Х	Х	Х	-							
BWMD21	-	Х	Х	-							
BWMD22	-	-	Х	-							
BWMD23	Х	Х	Х	-							
BWMD24	Х	Х	Х	Х							
BWMD25	-	-	Х	-							
BWMD26	Х	Х	Х	-							
BWMD28	-	-	Х	-							
BWMD29	-	Х	Х	-							
BWMD30	-	Х	Х	-							
BWMD31	Х	Х	Х	-							
VELDSQUARE1	Х	Х	Х	-							
VELDSQUARE2	Х	Х	Х	-							

Table 23: Summary of physio-chemical exceedances (2020-2021)

5.2 Nutrients

Nutrients are noted as a key concern for the water quality within the Swan Canning Water Quality Improvement Plan (SRT 2009), which identifies the Bayswater Brook as a key sub-catchment for TN load reduction (target reduction of 59% on existing levels, as of 2009). Further SRT (2009) has set target reductions of 27% of current TP loads for the Bayswater Brook catchment. Long and short term targets mentioned below are taken from this document.

Nutrient sampling during the 2020 and 2021 monitoring period recorded a number of sites within the catchment that had median nutrient concentrations in exceedance of the relative guideline concentrations. The number of exceedances has decreased since the 2018-2019 reporting period. The exceedances are summarised in Table 24.

The median total nitrogen (TN) concentration was highest towards the lower end of the catchment, near the outlet to the Swan River. The sites located in the section of open drain that runs alongside Tonkin Hwy (BWMD06, BMWD07 and BWMD08) all recorded elevated TN concentrations. Sites BWMD01, BWMD02, BWMD03, and BMWD04 are located downstream of the confluence open drains and reflect the combination of the higher concentration channels upstream to the north (BWMD06, BWMD07 and BWMD08) and to the east (BWMD26). High-nutrient stormwater runoff from the surrounding public open space may have attributed to higher TN concentrations at BWMD01 and BWMD02. These trends are the same as those observed in the 2018-2019 monitoring period however median TN has dropped slightly from 1mg/L to 0.9 mg/L in 2020-2021.

All samples besides 6 were below the short-term target (2 mg/L) identified in the Swan Canning Water Quality Improvement Plan (SRT 2009). These exceedances occurred in July of 2020 at BWMD16, BWMD06 and BWMD05 and in 2021 at BWMD16 and BWMD26 in July and BWMD24 in September. 29 samples exceeded the long-term target of 1 mg/L in 2020, while 32 exceeded this target in 2021. Oxidised nitrogen maintained high exceedances in 2018-2019 to 7 median exceedances in 2020-2021.

Significant spikes in total phosphorus were observed in September of 2021 at BWMD03, BWMD04 and BWMD06 at 1.4 mg/L, 0.85 mg/L and 1.8 mg/L respectively. However, annual median TP concentrations were below the short term and long-term nutrient reduction targets (0.2 and 0.1 mg/L respectively) for both years with no sites recording medians in exceedance of the long-term nutrient reduction targets in either year. Aside from BWMD06 and BWMD24, no sites recorded an annual median in exceedance of the short-term nutrient reduction targets.

There were two sites (BWMD06 and BWMD24) that recorded medians in exceedance of the default guidelines for soluble reactive phosphorus (SRP). This is an increase from no exceedances of median SRP in 2018-2019. BWMD24 is in a residential area, while BWMD06 is in the light industrial region. Given these exceedances did not occur in previous year, it is recommended to continue monitoring these sites closely for further exceedances of SRP.

The Swan River Trust (2009) modelled several management scenarios to assess the contribution of different scenarios to nutrient load reduction for the Swan Canning River system. Specifically, a selection of management scenarios was modelled individually and in combination for the Bayswater Brook catchment. The modelling exercise identified that a combination of management scenarios applied as a treatment train approach was able to reduce the annual nitrogen and phosphorous load below the maximum acceptable total nitrogen load (SRT 2009). Based on the outcomes of the modelling the combination of management actions that were found to be effective for both nitrogen and phosphorus loads within the Bayswater Brook catchment were:

- 100% septic tank infill
- Wetland implementation
- 50% public open space (POS) fertiliser reduction
- 15% urban fertiliser reduction.

While the residential infill sewerage program was completed within the catchment in the early 2018s, septic tanks are still reported to be present throughout the Bayswater industrial area and are therefore considered a local source of nutrients. An additional source of nitrogen within the lower section of the catchment is the former Cresco/CSBP site which is identified as contributing 25% of the annual Bayswater Brook catchment TN load (Barron *et al.* 2010).

Additional anthropogenic sources of nutrients within the catchment may include diffuse sources in the catchment such as urban runoff (detergents, fertilisers) and legacy nutrients in groundwater from historic land uses and residential septic tanks or point sources such as industrial sources (Nice *et al.* 2009).

Site	Median in	exceedance	of default guidel	ine value or	range
	NH _x -N	TN	NO _x -N	TP	SRP
BWMD01	Х	-	Х	-	-
BWMD02	-	Х	Х	-	-
BWMD03	Х	-	Х	Х	-
BWMD04	Х	-	Х	Х	-
BWMD05	-	-	Х	-	-
BWMD06	Х	Х	Х	Х	Х
BWMD07	-	-	Х	-	-
BWMD08	-	-	Х	-	-
BWMD09	-	-	-	-	-
BWMD10	-	-	-	-	-
BWMD11	Х	-	Х	-	-
BWMD12	-	-	-	-	-
BWMD13	-	-	-	-	-
BWMD14	-	-	Х	-	-
BWMD15	Х	-	Х	-	-
BWMD16	Х	Х	Х	-	-
BWMD17	-	-	Х	-	-
BWMD18	-	-	-	-	-
BWMD19	-	-	-	-	-
BWMD21	-	-	Х	-	-
BWMD22	-	-	Х	-	-
BWMD23	-	-	Х	-	-
BWMD24	-	-	-	Х	Х
BWMD25	-	-	-	Х	-
BWMD26	-	Х	Х	-	-
BWMD28	-	-	Х	-	-
BWMD29	-	-	Х	-	-
BWMD30	-	-	Х	-	-
BWMD31	-	-	-	-	-
Weldsquare01	-	-	-	-	-
Weldsquare02	-	-	_	_	-

Table 24: Summary of nutrient exceedances (2020-2021)

5.3 Metals

Metals can have a number of impacts on ecosystems including toxicity to aquatic biota, bioaccumulation within some animals and persistence within the environment, as well as aesthetic and health impacts (GHD, 2016).

Similar to the results of the previous years' monitoring programs, a majority of the sampling sites recorded multiple exceedances of the guideline values for both aluminium and zinc. As was discussed in the Water and Sediment Quality in the Bayswater Brook Catchment: 2018-2019 monitoring report (Urbaqua, 2020) the widespread presence of these metals in the surface water network is unlikely to be a result of stormwater runoff contamination and is more likely related to the groundwater conditions and surface geology in the surrounding area. Based on the catchment's positions within the regional hydrogeological system, it is expected that the Bayswater Brook receives regional groundwater contributions from recharge zones at the Gnangara Mound (Barron *et al.* 2010). Sites of concern for metals remain unchanged from previous reports.

There were 3 sites that recorded exceedances of the HMTV for chromium, BWMD09. BWMD15 and BWMD16. All 3 sites exceeded the HMTV on every occasion. BWMD16 was also only one of two sites to record exceedances of the HMTV for nickel, which it did at all sampling events in 2020 and 2021. BWMD02 was the only other site to record an exceedance of the HMTV of nickel and only on one occasion in September of 2021. BWMD16 has been identified in every previous report as a site of concern with regards to chromium and nickel concentrations.

It is noted that the site directly downstream of BWMD16, BWMD15 which is located directly upstream of the confluence with another main branch of the Bayswater Brook, was unable to be sampled due to lack of flow in all sampling events except July of both 2020 and 2021. It can be inferred from the observations of stagnant water at BWMD15 that the northern branch of the Bayswater Brook only connects to the downstream section and therefore the Swan River during periods of high flow, likely directly after significant rainfall events. This is confirmed by field observations, with notes taken during the August 2020 sampling event describing BWMD15 as wet but "too shallow to sample". The consequence of this periodic connectivity is that the stagnant water that is high in dissolved chromium and nickel concentrations is flushed downstream during rainfall events and not observed in the regular monitoring program. However, with the limited data at BWMD15 it is difficult to determine the downstream impact of the high chromium and nickel concentrations at BWMD16. This trend has been ongoing every monitoring year since 2016 with limited samples due to the lack of water available.

The high concentrations of chromium and nickel at BWMD16 suggest a potential point-source/s of contamination for these metals in the catchment area around or directly upstream of the site. Information provided by DWER states there is suspected chromium releases from the light industrial area. It is noted that BWMD16 appears to be downstream of nearby chrome metal plating businesses as discussed in the environmental health investigation (Appendix C), and it is also the only to site to have demonstrated exceedances of the ANZG (2018) chromium trigger values. In addition, uncovered construction or scrap materials and stored wrecked car bodies were observed in the surrounding area that may also be associated with the localised increase in soluble metals.

The exceedances of the soluble metal guidelines during the 2020-2021 monitoring period are summarised in Table 25.

With regards to sediment quality, BWMD26 exceeded ANZG (2018) high trigger values for Zinc on both occasions. This is an improved results compared to 2018 and 2019 where all metal guidelines were exceeded. It is noted that all sites exceeded in soluble zinc on almost all occasions. The only other sediment exceedance was observed at BWMD16 in September of 2021 where the nickel reading exceeded the ANZG (2018) high trigger value.

Site	≥ 50% of samples exceed guideline value	All samples exceeded guideline value
BWMD01	Zn	Zn
BWMD02	Al ¹ , Zn	-
BWMD03	Al ^{1,2} , Zn	Zn
BWMD04	Al ^{1,2} , Zn	Zn
BWMD05	Al ¹ , Zn	Zn
BWMD06	Al ^{1,2} , Zn	Zn
BWMD07	Al ¹ , Zn	Zn
BWMD08	Al ¹ , Zn	-
BWMD09	Al², Zn	Zn
BWMD10	Al², Zn	Zn
BWMD11	Al ^{1,2} , Zn	-
BWMD12	Al ^{1,2} , Zn	Al ²
BWMD13	Al², Zn	Al ²
BWMD14	Zn	Zn
BWMD15	Al², Zn	Zn
BWMD16	Al ¹ , Cr, Ni, Zn	Cr, Ni
BWMD17	Al ¹ , Zn	Zn
BWMD18	Al ¹ , Zn	-
BWMD19	Al ¹ , Zn	-
BWMD21	Al ¹ , Zn	Zn
BWMD22	Al ¹ , Zn	-
BWMD23	Zn	Zn
BWMD24	Cu, Zn	-
BWMD25	Zn	Zn
BWMD26	Zn	Zn
BWMD28	Zn	Zn
BWMD29	Al ¹ , Zn	Zn
BWMD30	Al ¹ , Zn	Zn
BWMD31	Zn	-
Weldsquare01	Al², Cu, Zn	Al ²
Weldsquare02	Al², Zn	Al ²

Table 25: Summary of soluble metals exceedances (2020-2021)

¹ Aluminium exceeds ANZG (2018) 95% species level protection (0.055 mg/L & pH > 6.5)

² Aluminium concentrations exceeds ANZG (2018) recreational guideline value (0.2 mg/L)

Metals can have a number of impacts on ecosystems including toxicity to aquatic biota, bioaccumulation within some animals and persistence within the environment, as well as aesthetic impacts and health impacts (GHD, 2016).

Baseline surface water quality assessments of urban (Nice et al. 2009) and industrial (Foulsham 2009) drainage throughout the Perth metropolitan region completed by the Department of Water identified that surface water concentrations of aluminium, iron, zinc and copper exceeded guidelines in the majority of catchments. These studies measured total metal concentrations and are therefore not directly comparable to the current monitoring program, however they highlight the common occurrence of these contaminants in urban and industrial drainages within Perth. Aluminium has potential to leach from natural deposits in the soil under low pH conditions, however Foulsham (2009) notes that a number of industries present in Bayswater including car wreckers, building product suppliers, automotive repair shops, sheet metal and fabrication facilities also widely use aluminium.

Table 26 reproduces a table of sources of metals in stormwater from the 2013 water and sediment quality report for the Bayswater Brook (included again in the 2014 & 2015 water and sediment quality report (GHD 2016) (SERCUL 2014) for the metals that were included in the Bayswater Brook monitoring program. Foulsham (2009) identifies small to medium industries present in the Bayswater Industrial area include car wreckers, automotive electricians, building product supplies, mechanical repair workshops, printing companies, cabinet makers, tyre repairers, service stations, battery suppliers, radiator specialists, gas suppliers, cleaning supplies, fridge and washer suppliers, panel and paint facilities, sheet metal and fabrication facilities, aluminium and chrome product suppliers, plasterers, sand blasting facilities, tile supplies and engineering companies.

Table 26: Sources of metals in stormwater (reproduced from SERCUL 2013)

Source	Al	Cr	Cu	Ni	Pb	Zn
Exists naturally	\checkmark	~		√		√
Combustion/burning of fossil fuels		\checkmark			\checkmark	
Waste water, sewerage sludge and landfill leachate	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Industrial activities and emissions					\checkmark	~
Chemical manufacturing (dyes, paints, plastics,		✓		~	✓	\checkmark
Electrical products		✓	✓			
Electroplating/alloys			\checkmark	\checkmark		
Metal industry and domestic products	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark
Corrosion of metal objects			✓			\checkmark
Wear of vehicle tyre and brake pads			\checkmark		\checkmark	\checkmark
Battery manufacture				\checkmark	✓	\checkmark
Engine parts		\checkmark		\checkmark		
Lubrication oil – oil/gas industries						\checkmark
Pesticides, fertilisers and agricultural/gardening		\checkmark	\checkmark	\checkmark		\checkmark
Wood treatment/products		\checkmark				\checkmark
Leather industry			\checkmark			
Manufacturing of ceramics, clay, paper, glass,	\checkmark	\checkmark				
Disinfectants/Antiseptics						\checkmark
Computer and TV screen					\checkmark	
Pharmaceuticals/medicines/medicine treatment		\checkmark				
Steam and air conditioning supplies		\checkmark				
Cement product plants		\checkmark				
Construction						\checkmark
Pipes					✓	✓
Fluorescent lighting/power plants				\checkmark		
Waste incinerator				\checkmark		
Food products equipment/food industry				\checkmark		

6 RECOMMENDATIONS

This section provides recommendations that are intended to support the long-term vision for the Bayswater Brook. The recommendations are linked back to the proposed management actions identified within plans prepared for the catchment, the most recent being the Waterwise Bayswater Strategy (Urbaqua, 2020), which superseded the Bayswater Brook Action Plan (Bluesands Environmental, 2012).

The results from the 2020-2021 monitoring program are largely consistent with the results from the 2018-2019 monitoring program and therefore the recommendations for water quality improvement actions carry over from the Water and Sediment Quality in the Bayswater Brook Catchment 2018-2019 (Urbaqua, 2020) report.

The Bayswater Brook monitoring program has identified elevated concentrations of nutrients and metals at various locations across the study area, which are listed below. A number of water quality parameters recorded exceedances of ecosystem health guidelines (ANZG 2018 south-west lowland rivers trigger values and site specific HMTV), as well as recreational guidelines (ANZG 2018).

Within the catchment the biggest concern is widespread elevated concentrations of nitrogen and soluble metals. This is consistent with previous years' monitoring programs; sources of nutrients and metals in the catchment are likely associated with both current and historic land use practises within the catchment (GHD, 2016). The Swan Canning Water Quality Improvement Plan (SRT 2009) identified the Bayswater Brook sub-catchment as having an unacceptable total nitrogen load requiring a load reduction of > 45%.

A risk management approach is recommended to assist with source identification across all potential water quality parameters of concern in surface waters, and prioritisation of future management actions.

Soluble metal concentrations were elevated across the study area, particularly soluble aluminium and zinc. As was previously stated, the widespread nature indicates that the source is more likely from the surrounding surface geology and groundwater intrusion rather than contamination from surface runoff. However, there were a number of sites that had multiple exceedances of soluble metals that indicate poor water quality that could potentially impact the ecosystem health. The City of Bayswater is completing small-medium enterprise audits by local government environmental health officers.

The sub catchment surrounding BWMD16 should be the focus of any future audits and investigation into potential sources of metal contamination in surface water. BWMD16 has consistently returned elevated concentrations of chromium and nickel for at least the past 7 years of monitoring and therefore consideration should be given to specifically identifying and potentially rectifying the origin of these metals in the system. Sites to consider for further investigation include:

- BWMD02 (TN, NOx, SRP)
- BWMD06 (NH_x-N) (Al, Cu, Zn)
- BWMD09 (DO) (TP) (Al, Cr, Cu, Zn)
- BWMD15 (Al, Zn)
- BWMD16 (TN, NOx) (Al, Cr, Ni, Zn)
- BWMD24 (DO) (TP, SRP) (Cu, Zn)
- BWMD26 (TN, NOx, TP) (Zn)
- WELDSQUARE1 (AI, Cu, Zn)

It is also recommended that an alternative to site BWMD15 be explored due to inconsistent availability of water in the last few years. If possible, a site within close proximity is recommended as it is immediately downstream of site BWMD16 and thus may be considered a significant monitoring location within the catchment.

Water quality improvement plans

Future water quality improvement planning within the catchment should consider the identification of high groundwater contribution to the Bayswater Brook to further target baseflow water quality. It is recommended that as water quality improvement planning within the catchment progresses the prioritisation and design of appropriate structural best management practises should consider the dominant transport pathways and key water quality parameters of concern of the contributing sub-catchment through targeted monitoring programs, as well as site specific constraints to design and construction (GHD, 2016).

As per the Delivering WSUD in the City of Bayswater document (Urbaqua, 2022), it is recommended that consideration is given into Water Sensitive Urban Design (WSUD) strategies to better manage stormwater and drainage.

It is also advised to continue progressing with the implementation of the City's living streams program. A number of sections of open drain located within the Morley Activity Centre redevelopment area, in the mid to upper catchment, have been previously identified as sites for opportunities including:

- Rudloc Road open drain
- Vera Street open drain
- Nora Hughes open drain

As mentioned in previous years, it is recommended that consideration be given to identification of additional WQIP sites within the lower catchment downstream of the identified large potential nitrogen sources (Bayswater industrial area and former Cresco/CSBP site), in order to provide a treatment train for baseflow in conjunction with the Eric Singleton Bird Sanctuary wetland, which was completed in October 2015. In particular there are numerous sections of open drain that may present opportunities for linear WQIP such as living streams or groundwater treatment curtains in areas of high groundwater discharge to the drainage network. It is recommended that the separate *Eric Singleton Bird Sanctuary Sampling and Analysis Plan* and results be considered in future monitoring assessments for the Bayswater Brook catchment.

If any sites are transformed into living streams or wetlands which are part of the Bayswater Brook, it is proposed that additional baseline upstream and downstream monitoring be undertaken in order to support future performance assessment of the project.

7 **REFERENCES**

ANZECC & ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality.

ANZG (2018) Australian Government Australia and New Zealand Guidelines for Fresh & Marine Water Quality

Barron, O., Donn, M.K., Pollock, D., Johnstone, C. (2010) Determining the effectiveness of best management practices to reduce nutrient flows in urban drains management by the Water Corporation: Part 1 Water quality and water regime in Perth urban drains, CSIRO: Water for a healthy country National Research Flagship.

Bartram, Jamie, Ballance, Richard, World Health Organization & United Nations Environment Programme. (1996). Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programs / edited by Jamie Bartram and Richard Ballance. London : E & FN Spon.

Bluesands Environmental (2012) Bayswater Brook Action Plan. Prepared for the Bayswater Brook Working Group, May 2012.

Canadian Council of Ministers of the Environment (2002) Canadian Sediment Quality Guidelines.

City of Bayswater (2017) Sampling and Analysis Plan, Bayswater Brook, Water and sediment quality monitoring 2017, SG-C-BAYMD.

Connell, D.W. and Miller, G.J (1984) Chemistry and ecotoxicology of pollution, John Wiley & Sons, New York.

Essential Environmental Services (2014) Morley Activity Centre Local Water Management Strategy, prepared for the City of Bayswater, March 2014.

Foulsham, G. (2009) A snapshot of contaminants in drains of Perth's industrial areas, Water Science technical series report no. 12, Department of Water, Western Australia.

GHD (2016) Water and sediment quality in the Bayswater Brook: Winter 2014 and 2015. Report prepared for the City of Bayswater.

Government of Western Australia (2018) Media statements - Morley drainage area transformed into a recreational park for the community. Available at: <<u>https://www.mediastatements.wa.gov.au/Pages/McGowan/2018/04/Morley-drainage-area-</u> transformed-into-a-recreational-park-for-the-community.aspx> [27th July 2020]

South East Regional Centre for Urban Landcare (SERCUL) (2014) Water and sediment quality in the Bayswater Brook: Winter 2013, report prepared for City of Bayswater.

Swan Catchment Council (SCC) (2007) Claisebrook Main Drain catchment water and sediment quality investigation 2007 monitoring program, prepared by the Swan Catchment Council in conjunction with the Department of Water – Water Science Branch and the Claisebrook Catchment Group

Swan River Trust (SRT) (2000) Swan Canning Water Quality Improvement Plan. Swan River Trust, Perth, Western Australia.

Urbaqua (2018) Water and Sediment Quality in the Bayswater Brook Catchment 2016-2017. Prepared for the City of Bayswater.

Urbaqua (2020a) Sampling and Analysis Plan, Bayswater Brook, Water and sediment quality monitoring 2020, SG-C-BAYMD. Prepared for the City of Bayswater.

Urbaqua (2020b) Water and Sediment Quality in the Bayswater Brook Catchment 2018-2019. Prepared for the City of Bayswater.

Urbaqua (2020c) Waterwise Bayswater, A strategy to 2030. Prepared for the City of Bayswater.

Urbaqua (2021) Sampling and Analysis Plan, Bayswater Brook, Water and sediment quality monitoring 2021, SG-C-BAYMD. Prepared for the City of Bayswater.

Urbaqua (2022) Delivering WSUD in the City of Bayswater. Prepared for the City of Bayswater. **Unpublished**, **Draft**.

Appendix A Results of water and sediment quality

105	Barometer	Specific Conductivity	Salinity	TDS	Temp	TSS (mg/L)	рН	ORP	ODO	ODO	Depth
LOR Unit	- mmHg	- μS/cm	- ppt	- mg/L	- °C	- mg/L	-	- mV	- % Sat	- mg/L	- m
ANZG (2018) lowland river		0.13-0.3		1000			6.5 - 8.0 6.5 - 8.5				
ANZG (2018) Recreational BWMD01 Jul-2	.0 770.1	0.75	0.37	487	59.1	0	6.85	65.6	76.6	7.69	0.586
Aug-2	0 764.2		0.35	466	15.1	0	6.55	128	82.2	8.26	0.274
Sep-2 Jul-2			0.28 0.36	374 477	15.8 15.9	0 0	7.21 6.91	88.8 108.8	82.7 92.4	8.19 9.12	0.314 0.332
Aug-2			0.32	419	17.9	0	7.34	125.8	88.4	8.37	0.428
Sep-2	_		0.3	400	16.6	0	7.09	241.6	-	-	0.384
BWMD02 Jul-2 Aug-2			0.4 0.38	524 497	64.2 18.4	0 0	7.09 7.03	54.3 71.6	81.8 85.9	7.74 8.05	0.353 0.307
Sep-2	0 759.8	0.655	0.32	426	18.6	0	6.86	74.3	82.7	7.73	0.346
Jul-2 Aug-2			0.7 0.31	900 412	18.5 19	0	7.13 7.46	120.7 158.2	84.3 92.9	7.87 8.6	0.365 0.333
Sep-2			0.3	412	19.7	0	7.40	211.1	-	-	0.285
BWMD03 Jul-2		-	-	-	-	-	-	-	-	-	-
Aug-2 Sep-2			0.34 0.25	446 341	15.6 16.2	0 0	6.92 6.9	18.5 42	93.3 97.5	9.27 9.57	0.359 0.348
Jul-2			0.37	486	16.2	0	6.82	91.6	96.2	9.44	0.835
Aug-2			0.3	396	18.3	0	7.07	60.6	96.4	9.06	0.521
Sep-2 BWMD04 Jul-2			0.3	396 466	17 60.5	0	6.89 7.03	119 2.8	- 96.4	9.53	0.294
Aug-2	0 764.3	0.674	0.33	438	15.8	0	6.92	3.6	96.8	9.58	0.493
Sep-2 Jul-2			0.25 0.36	331 474	16.3 16.2	0	6.82 6.72	47.6 87.1	99.1 97.8	9.71 9.6	0.446 0.483
Aug-2			0.38	389	18.4	0	7.01	59.5	97.8	9.8	0.485
Sep-2			0.29	388	17.6	0	6.97	97.6	-	-	0.331
BWMD05 Jul-2 Aug-2			0.45 0.3	596 402	59.2 16.3	0 0	6.21 7.11	55.5 72.4	66.9 100.5	6.72 9.83	0.349 0.844
Sep-2	.0 760		0.24	322	18	0	7.03	102.3	109.6	10.36	0.825
Jul-2			0.38	499 428	17.6 18.3	0 0	7.19	143.6	97.9	9.32	0.352
Aug-2 Sep-2			0.32 0.26	428 352	20.6	0	6.62 7.1	81.8 173.7	- 88.8	8.35 -	0.478
BWMD06 Jul-2			0.41	544	61	0	6.55	-5	73.4	7.22	0.377
Aug-2 Sep-2			0.38 0.24	505 319	15.7 16.4	0 0	6.3 6.44	4.4 26.9	78 89.5	7.72 8.75	0.394 0.384
Jul-2			0.36	481	16.1	0	6.97	68.8	89.2	8.77	0.284
Aug-2			0.26	353	19.1	0	7.2	121	101.3	9.37	0.346
Sep-2 BWMD07 Jul-2			0.33	436 458	19.3 59.6	0	6.51 6.63	103.5 73.1	- 38.8	- 3.88	0.343
Aug-2	0 763.2	0.649	0.32	422	15.4	0	6.53	85.2	45.7	4.56	0.628
Sep-2 Jul-2			0.2 0.31	265 417	17.2 16.3	0 0	6.33 7.22	124 143.2	92.5 65	8.9 6.37	0.643 0.298
Aug-2			0.29	382	18.6	0	6.53	143.2	68.9	6.44	0.32
Sep-2			0.28	381	19.9	0	6.65	117.2	-	-	0.311
BWMD08 Jul-2 Aug-2			0.34 0.32	458 430	65.6 17.9	0	6.69 6.48	79.9 94	81.5 80.7	7.59 7.63	0.338 0.495
Sep-2	0 759.3	0.422	0.2	274	17	0	6.38	123.1	89.4	8.63	0.491
Jul-2 Aug-2			0.3 0.29	403 382	15.8 18.8	0 0	7.32 6.48	154.4 145.9	65.9 72.9	6.52 6.78	0.299 0.532
Sep-2			0.29	382	18.8	0	6.62	143.9	-	-	0.292
BWMD09 Jul-2			0.06	88	55.4	0	6.46	97.2	17.2	1.81	0.547
Aug-2 Sep-2		- 0.315	- 0.15	- 205	- 16.7	- 0	- 5.99	- 9.6	- 18.6	- 1.8	- 0.256
Jul-2			0.2	271	15.3	0	6.47	71.5	20.6	2.06	0.321
Aug-2 Sep-2			0.34 0.23	451 306	16.8 15.8	0 0	6.59 6.44	102.5 141.3	24.1 51.3	2.33 5.08	0.283
BWMD10 Jul-2		-	-	-	-	-	-	-	-	-	-
Aug-2	0 768.2		0.08	103	14.2	0	6.2	15.6	11.6	1.19	0.346
Sep-2 Jul-2			0.08	104 419	17.2 16.9	0 0	6.48 6.25	57.8 157.2	45.6 32.5	4.39 3.15	0.459 0.311
Aug-2	1 758.2	0.798	0.39	519	17.8	0	6.1	135.6	31.7	3.01	0.305
Sep-2			0.14	190	16.3	0	6.66	134.6	77.6	7.61	-
BWMD11 Jul-2 Aug-2			0.31 0.33	416 442	67.5 18.5	0 0	5.95 6.14	-21.7 30.4	40.9 46.4	3.73 4.34	0.274 0.479
Sep-2	.0 762.9	0.604	0.29	393	18.1	0	6.15	75	61.1	5.76	0.279
Jul-2 Aug-2			0.25 0.27	340 358	17.2 17.8	0 0	6.46 6.28	127.2 109.4	66.1 56.3	6.35 5.34	0.318 0.316
Sep-2	1 759.2	0.429	0.21	279	17.8	0	6.38	126.9	72.9	6.95	-
BWMD12 Jul-2			0.2	265	65.1	0	5.81	7.9	46.6	4.37	0.266
Aug-2 Sep-2			0.26 0.24	344 322	17.4 17.9	0 0	5.92 6.21	44.3 56.2	51.5 72.7	4.93 6.89	0.355 0.278
Jul-2	1 761.1	0.414	0.2	269	16.7	0	6.46	148.5	82.8	8.03	0.319
Aug-2 Sep-2			0.23 0.21	314 278	17.4 17.9	0 0	6.71 6.36	140.2 107.6	77.3 109.9	7.4 10.42	0.279
BWMD13 Jul-2	_		0.28	369	61	0	5.51	121.8	33.8	3.32	0.255
Aug-2			0.3	400	13	0	5.31	33.5	19.9	2.09	0.474
Sep-2 Jul-2		0.519	0.25	337	15.8 -	0	5.63	69.7 -	24.2	2.4	0.287
		0.472									

	c	750.0	0.425	0.04	202	47.4	2	6.2		50.4	4.02	
BWMD14	Sep-21 Jul-20	758.3 768.6	0.435	0.21	283 400	17.4 64.8	0	6.3 6.87	147 13.2	50.4 95.3	4.83 8.96	- 0.332
	Aug-20	763.1	0.625	0.3	406	18.7	0	6.79	66.8	98	9.13	0.317
	Sep-20	759.6	0.489	0.24	318	18.4	0	6.74	90.2	99.1	9.29	0.333
	Jul-21	756.9	0.81	0.4	526	18.2	0	7.24	116.5	94.1	8.84	0.452
	Aug-21	760.3	0.559	0.27	364	20	0	6.86	124.4	97.5	8.85	0.61
BWMD15	Sep-21 Jul-20	755.1 768.2	0.554	0.27	360 339	20.6 66.9	0	6.92 6.31	154.6 44.6	- 69.2	- 6.36	0.238
BWWD15	Aug-20	768.2	0.522	0.25	330	18.8	0	6.37	44.0 111.4	89.2 81.7	7.6	0.35
	Sep-20	759.5	0.46	0.22	299	21	0	6.32	126.4	92.7	8.26	0.283
	Jul-21	756.7	0.813	0.4	529	18.6	0	6.53	126.1	28.6	2.67	0.262
	Aug-21	760.1	0.374	0.18	243	18.8	0	6.21	131.7	20.9	1.95	0.384
	Sep-21	754.8	0.363	0.17	236	18.2	0	6.77	166.2	-	-	0.264
BWMD16	Jul-20	767.4 762.4	0.65	0.32	423 388	69.3	0 0	6.43	59.4	28.6	2.56 5	0.493
	Aug-20 Sep-20	762.4	0.597 0.507	0.29 0.25	388	19.5 19.6	0	6.28 6.1	67.2 84.4	54.5 44.7	5 4.09	0.552 0.48
	Jul-21	756.8	0.998	0.49	649	19.9	0	6.86	96.1	34.7	3.16	0.261
	Aug-21	759.6	0.411	0.2	267	20.5	0	6.11	103.1	19.4	1.75	0.359
	Sep-21	754.2	0.437	0.21	284	19.7	0	6.29	157.8	-	-	0.226
BWMD17	Jul-20	766.5	0.588	0.29	382	64.3	0	6.86	79.2	82.3	7.79	0.312
	Aug-20	761.7	0.564	0.27	367	17.7	0	6.79	70.9	96.2	9.15	0.435
	Sep-20 Jul-21	759.6 756.6	0.514 0.584	0.25 0.28	334 380	19.1 17.5	0 0	6.89 6.99	42.5 156.4	95.9 79.6	8.86 7.6	0.265 0.337
	Aug-21	758.7	0.531	0.26	345	20.3	0	6.71	160.1	109.9	9.93	0.709
	Sep-21	757.3	0.485	0.24	315	16.6	0	7.22	132.8	64	6.23	-
BWMD18	Jul-20	766.3	0.496	0.24	323	64.4	0	6.62	41.6	61.1	5.77	0.38
	Aug-20	761.5	0.594	0.29	386	18.1	0	6.84	78.4	73.7	6.95	0.266
	Sep-20 Jul-21	759.6 761.9	0.497 0.408	0.24 0.2	323 265	18.6 16.4	0 0	6.64 6.59	66.6 109.4	80.3 54.6	7.5 5.33	0.354 0.33
	Jui-21 Aug-21	761.9	0.408	0.2	265 367	20	0	6.66	109.4 155.2	54.6 75	5.33 6.81	0.33
	Sep-21	757.3	0.488	0.24	317	16.7	0	7.47	125.2	72	6.99	-
BWMD19	Jul-20	766.2	0.684	0.34	445	61.6	0	6.3	63.1	27.1	2.65	0.535
	Aug-20	761.6	0.622	0.3	404	17.8	0	6.25	91.3	29.6	2.81	0.289
	Sep-20	759.4	0.513	0.25	333	18.9	0	6.24	41.9	62.5	5.8	0.229
	Jul-21	761.9 758.4	0.417 0.55	0.2	271 357	16.5 20	0 0	6.68	137.5 109.1	51 70.5	4.97	0.425
	Aug-21 Sep-21	758.4	0.55	0.27	357 341	17.6	0	6.34 6.87	109.1	70.5 61.6	6.41 5.87	0.436
BWMD20	Jul-20 -	70710	-	-	-	-	-	-	-	-	-	-
-	Aug-20 -		-	-	-	-	-	-	-	-	-	-
	Sep-20 -		-	-	-	-	-	-	-	-	-	-
	Jul-21 -		-	-	-	-	-	-	-	-	-	-
	Aug-21 -		-	-	-	-	-	-	-	-	-	-
BWMD21	Sep-21 - Jul-20	766.3	0.414	0.2	269	- 63.5	- 0	6.92	20.5	61.1	- 5.84	0.302
DWWDZI	Aug-20	761.5	0.595	0.29	387	17.7	0	6.99	90.3	69.4	6.6	0.401
	Sep-20	759.4	0.474	0.23	308	18.2	0	6.73	73.1	79.8	7.51	0.493
	Jul-21	762	0.388	0.19	252	16.2	0	6.67	105.9	58.6	5.76	0.472
	Aug-21	758.3	0.571	0.28	371	20.5	0	6.95	137.3	82	7.37	0.342
BWMD22	Sep-21	757.8	0.448	0.22	291	17	0	7.45	129.6	71.3	6.88 7.51	-
BWWD22	Jul-20 Aug-20	766.4 761.7	0.588 0.588	0.29 0.29	382 382	63.2 18	0	6.66 6.59	104.8 109.7	78.4 110.4	10.43	0.44 0.298
	Sep-20	762.4	0.561	0.27	365	17.4	0	6.19	106.6	64.1	6.13	0.407
	Jul-21	761.7	0.523	0.25	340	17.4	0	6.47	18.6	58.5	5.6	0.8
	Aug-21	757.9	0.512	0.25	333	20.2	0	6.42	108.4	85.8	7.75	0.282
	Sep-21	757.8	0.494	0.24	321	17.7	0	7.21	114.2	83.1	7.9	-
BWMD23	Jul-20	766.4	0.617	0.3	401	63.7	0	6.4	122.6	61.8	5.89	0.361
	Aug-20 - Sep-20	758.5	- 0.53	- 0.26	- 345	- 18.1	- 0	- 6.38	- 129.9	- 82.8	- 7.81	- 0.199
	Jul-21	761.4	0.569	0.28	370	17.9	0	6.41	157.9	58.8	5.57	0.379
	Aug-21	757.6	0.505	0.24	328	20.7	0	6.22	168.2	64.6	5.79	0.324
	Sep-21	758.2	0.494	0.24	321	18.6	0	6.63	149	76.6	7.16	-
BWMD24	Jul-20	766.4	0.315	0.15	205	64	0	6.52	-57.4	34.7	3.3	-
	Aug-20 Sep-20	761.9 759.2	0.219 0.248	0.1 0.12	143 161	17.8 16.6	0 0	6.44 6.43	-52.7 -58.4	39.2 48.4	3.72 4.71	0.278 0.205
	Jul-21 -	133.2	-	-	-	-	-	-	-36.4	-	- 4.71	-
	Aug-21	758.2	0.474	0.23	308	20.5	0	6.37	101.4	26.2	2.36	0.484
	Sep-21	753.9	0.433	0.21	282	19.8	0	6.65	165.2	-	-	0.262
BWMD25	Jul-20	766.3	0.328	0.16	213	59.2	0	6.71	9.1	40.5	4.07	0.419
	Aug-20	762	0.37	0.18	240	16.2	0	6.78	82.4	149.9	14.72	0.394
	Sep-20 Jul-21	759.6 761.7	0.206 0.199	0.1 0.09	134 130	16.9 14.5	0 0	9.12 6.55	56.3 215.5	158.4 25.2	15.34 2.57	0.304 0.452
	Aug-21	758.2	0.446	0.22	290	14.5	0	6.77	154.8	104.5	9.74	0.288
	Sep-21	753.9	0.401	0.19	261	18.5	0	6.96	158.7	-	-	0.369
BWMD26	Jul-20	769.7	0.938	0.46	610	63.4	0	6.46	42.5	28	2.67	0.348
	Aug-20	763.5	0.786	0.39	511	16.7	0	6.48	57.8	41.9	4.07	0.367
	Sep-20 Jul-21	759.1 757.5	0.662 1.126	0.32 0.56	430 732	17.6 18.6	0 0	6.29 6.57	75.4 143.4	51.2 27.8	4.87 2.59	0.28 0.272
	Aug-21	760.9	0.561	0.56	365	18.6	0	6.67	143.4 122.6	27.8	2.59	0.272
	Sep-21	756.9	0.555	0.27	361	17.4	0	6.43	164.3	-	-	0.33
			-	-	-	-	-	-	-	-	-	-
BWMD27	Jul-20 -											
BWMD27	Jul-20 - Aug-20 -		-	-	-	-	-	-	-	-	-	-
BWMD27	Jul-20 - Aug-20 - Sep-20 -		-	-	-	-	-	-	-	-	-	-
BWMD27	Jul-20 - Aug-20 - Sep-20 - Jul-21 -		-	-	-	-	-	-	-	-	-	-
BWMD27	Jul-20 - Aug-20 - Sep-20 -										-	-

	Aug-20	-	-	-	-	-	-	-	-	-	-	-
	Sep-20	758.6	0.454	0.22	295	17	0	6.67	126.2	78.4	7.57	0.593
	Jul-21	761.9	0.523	0.25	340	16.9	0	6.81	164.1	60.4	5.84	0.412
	Aug-21	757.9	0.505	0.24	328	20.1	0	6.54	172.1	98.7	8.94	0.328
	Sep-21	757.7	0.502	0.24	326	17.6	0	6.94	139.9	82.1	7.82	-
BWMD29	Jul-20	766.3	0.375	0.18	243	61.6	0	7.08	81.5	81.2	7.92	0.311
	Aug-20	762.1	0.502	0.24	327	15.8	0	6.59	121.8	59	5.85	0.265
	Sep-20	758.6	0.451	0.22	293	16.3	0	6.46	129.9	62.9	6.16	0.415
	Jul-21	762	0.398	0.19	259	16.5	0	7	182.1	69.8	6.82	0.344
	Aug-21	758.1	0.511	0.25	332	19.7	0	6.55	169.5	74.2	6.78	0.509
	Sep-21	758	0.497	0.24	323	17.2	0	6.84	143.7	82.5	7.92	-
BWMD30	Jul-20		-	-	-	-	-	-	-	-	-	-
	Aug-20		-	-	-	-	-	-	-	-	-	-
	Sep-20	-	-	-	-	-	-	-	-	-	-	-
	Jul-21	-	-	-	-	-	-	-	-	-	-	-
	Aug-21	-	-	-	-	-	-	-	-	-	-	-
	Sep-21	758.2	0.496	0.24	322	17.2	0	6.7	151.6	79.1	7.59	-
BWMD31	Jul-20	766.8	0.406	0.2	264	58.4	0	6.33	-30.2	21.4	2.17	0.406
	Aug-20	761.7	0.546	0.27	355	17.3	0	6.16	91.3	44.3	4.25	0.644
	Sep-20	762.4	0.52	0.25	338	16.7	0	5.8	59.2	23.6	2.29	0.377
	Jul-21	762	0.293	0.14	190	16	0	6.88	95.6	49.9	4.92	0.331
	Aug-21	758	0.531	0.26	345	20	0	6.44	127.9	50.3	4.57	0.471
	Sep-21	757.7	0.349	0.17	227	17.5	0	7.42	91.9	63.8	6.09	-
WELDSQUARE1	Jul-20	763.2	0.539	0.26	350	61.4	0	5.52	158.2	39.1	3.82	0.257
	Aug-20	767.9	0.606	0.3	394	13.2	0	5.64	73.8	27.3	2.86	0.349
	Sep-20	762.3	0.518	0.25	337	16.1	0	5.64	109.9	31.6	3.11	0.332
	Jul-21	761.3	0.453	0.22	294	16.6	0	6.19	86.8	32.9	3.21	0.322
	Aug-21	757.9	0.471	0.23	306	17 17.4	0	6.59	133.5	21.9	2.11	0.366
	Sep-21	758.5	0.442	0.21	287		0	6.32	152.1	52.4	5.02	-
WELDSQUARE2	Jul-20	763.2	0.468	0.23	304	60.2	0	5.57	168	47.7	4.73	0.262
	Aug-20	768.1	0.593	0.29	385	12.8	0	5.87	116.1	33.2	3.51	0.478
	Sep-20	762.3	0.513	0.25	334	15.9	0	5.8	112.7	25.2	2.49	0.307
	Jul-21	761.2	0.442	0.21	288	16.2	0	6.3	143.9	44.2	4.34	0.421
	Aug-21	757.8	0.484	0.23	314	16.8 17	0	6.37	121.3	21.2	2.05	0.414
	Sep-21	758.6	0.462	0.22	300	1/	0	6.26	155.6	49.8	4.8	-

	LOR	Ammonia as N <0.010	FRP <0.005	Organic Nitrogen - Filterable <0.025	Organic Nitrogen - Total <0.025	Total Kjeldahl Nitrogen (Calc) <0.025	Total Nitrogen <0.025	Total Oxidised Nitrogen (TON) <0.010	Total Phosphorus <0.005	Total Suspended Solids <1
ANTC (2010)	Unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
) lowland river) Recreational	0.08	0.04				1.2	0.15	0.065	
BWMD01	Jul-20	0.2	0.025	0.39	0.47	0.67	1.2	0.54	0.059	4
	Aug-20 Sep-20	0.15	0.019 0.015	0.42 0.42	0.42 0.48	0.58 0.56	1.1 0.9	0.49 0.33	0.045 0.045	4 5
	Jul-21	0.049	0.013	0.4	0.46	0.51	0.97	0.46	0.059	7
	Aug-21	0.25	0.016	0.5	0.56	0.81	1.4	0.6	0.057	5
BWMD02	Sep-21 Jul-20	0.18 0.095	0.013	0.53	0.54	0.72	1.2	0.48	0.046	5
	Aug-20	0.088	0.034	0.44	0.48	0.57	1.3	0.71	0.065	5
	Sep-20		0.029	0.34	0.35	0.38	1.1	0.74	0.042	<1
	Jul-21 Aug-21	0.054 0.06	0.049 0.045	0.5 0.37	0.53 0.41	0.59 0.47	1.9 1.9	1.3 1.4	0.072 0.076	<1 4
	Sep-21	0.011	0.031	0.43	0.48	0.49	1.7	1.2	0.048	1
BWMD03	Jul-20	-	- 0.023	- 0.45	- 0.47	-	- 1.1	- 0.49	- 0.051	- 4
	Aug-20 Sep-20	0.16 0.059	0.023	0.43	0.46	0.63 0.52	0.84	0.32	0.051	4 <1
	Jul-21	0.053	0.019	0.47	0.53	0.58	1	0.45	0.069	7
	Aug-21 Sep-21	0.13 0.098	0.021 0.015	0.49 0.58	0.55 1.1	0.68 1.2	1.2	0.56 0.43	0.066 1.4	7 79
BWMD04	Jul-20	0.28	0.015	0.54	0.63	0.91	1.4	0.49	0.067	5
	Aug-20	0.2	0.026	0.45	0.48	0.68	1.2	0.49	0.052	4
	Sep-20 Jul-21	0.073 0.064	0.023 0.019	0.4 0.44	0.41 0.53	0.49 0.59	0.84 0.99	0.35 0.4	0.056	4
	Aug-21	0.14	0.015	0.46	0.54	0.68	1.2	0.55	0.067	6
D14(0.0205	Sep-21	0.091	0.016	0.49	0.84	0.93	1.4	0.47	0.85	53
BWMD05	Jul-20 Aug-20	0.64 0.074	0.037 0.016	0.49 0.41	0.6 0.46	1.2 0.53	2	0.79 0.47	0.13 0.037	25 4
	Sep-20	0.014	0.013	0.39	0.45	0.46	0.73	0.27	0.032	2
	Jul-21	0.005	0.007	0.43	0.44	0.44	0.88	0.44	0.038	5
	Aug-21 Sep-21	0.25 0.005	0.038	0.52 0.57	0.59 0.62	0.84 0.62	1.3 0.99	0.5 0.38	0.1	9
BWMD06	Jul-20	0.64	0.041	0.41	0.51	1.1	2.1	0.94	0.13	16
	Aug-20	0.44	0.048	0.35	0.36	0.8	1.5	0.68	0.1	9
	Sep-20 Jul-21	0.16 0.12	0.044 0.041	0.39 0.51	0.46 0.57	0.62 0.69	0.97 1.1	0.35 0.38	0.098 0.13	7 10
	Aug-21	0.05	0.017	0.43	0.52	0.57	1.1	0.56	0.038	4
BWMD07	Sep-21 Jul-20	0.36	0.02	0.5	1 0.59	1.4 0.74	1.7	0.3	1.8	88
BWWID07	Aug-20	0.16	0.014	0.49	0.59	0.74	1.2	0.42	0.033	2
	Sep-20	0.005	0.012	0.4	0.46	0.46	0.66	0.2	0.028	3
	Jul-21 Aug-21	0.005	0.006	0.61 0.57	0.65 0.62	0.65 0.72	0.83 1.1	0.17 0.38	0.047 0.032	5 4
	Sep-21	0.005	0.0025	0.62	0.67	0.67	0.93	0.26	0.024	2
BWMD08	Jul-20	0.13	0.012	0.54	0.6	0.73	1.2	0.46	0.029	1
	Aug-20 Sep-20	0.032	0.009	0.51 0.43	0.55 0.46	0.58 0.46	1.2 0.69	0.58 0.23	0.029 0.029	6 2
	Jul-21	0.005	0.0025	0.56	0.64	0.64	0.81	0.18	0.045	6
	Aug-21	0.087	0.014	0.58	0.62	0.71	1.1	0.35	0.038	3 2
BWMD09	Sep-21 Jul-20	0.061	0.0025	0.58	0.6	0.66	0.96	0.3	0.027	13
	Aug-20		0.021	0.39	0.44	0.49	0.49	0.005	0.068	8
	Sep-20 Jul-21		0.011 0.025	0.37	0.49 0.79	0.52 0.79	0.53 0.82	0.013	0.055	6 14
	Aug-21	0.005	0.025	0.69 0.6	0.63	0.79	0.82	0.021	0.073	6
	Sep-21	0.005	0.005	0.39	0.5	0.5	0.57	0.067	0.033	10
BWMD10	Jul-20 Aug-20	-	-	-			-	-	-	-
	Sep-20	0.061	0.019	0.22	0.26	0.33	0.4	0.076	0.047	3
	Jul-21		0.016	0.62	0.67	0.69	0.94	0.25	0.048	6
	Aug-21 Sep-21	0.045	0.007	0.64	0.65 0.52	0.69 0.52	0.9 0.58	0.2	0.026 0.035	5 9
BWMD11	Jul-20	0.23	0.032	0.61	0.63	0.86	1.2	0.37	0.048	<1
	Aug-20		0.023	0.47	0.54	0.74	1.1	0.41	0.033	<2
	Sep-20 Jul-21	0.11 0.058	0.018 0.013	0.54 0.65	0.56 0.68	0.67 0.74	1 1.2	0.34 0.45	0.034 0.036	3 3
	Aug-21	0.071	0.009	0.65	0.69	0.76	1.1	0.37	0.04	6
BWMD12	Sep-21	0.017	0.027	0.55	0.58	0.6	0.8	0.2	0.053	5
	Jul-20 Aug-20	0.13 0.087	0.0025	0.65	0.66	0.79	1.1 0.95	0.28	0.026	9
	Sep-20	0.035	0.007	0.58	0.6	0.64	0.69	0.054	0.02	4
	Jul-21 Aug-21	0.005	0.0025	0.69 0.66	0.69 0.75	0.69 0.77	0.84 0.9	0.15 0.13	0.028 0.03	3 15
	Sep-21	0.005	0.0025	0.61	0.76	0.76	0.9	0.15	0.03	2
BWMD13	Jul-20	0.13	0.021	1	1.3	1.4	1.4	0.018	0.099	18
	Aug-20 Sep-20	0.074 0.058	0.019 0.012	0.86 0.63	0.88 0.69	0.96 0.75	0.97 0.77	0.014 0.025	0.039 0.031	6 4
	Jul-21	-	-	-	-	-	-	-	-	-
	Aug-21	0.057	0.006	0.64	0.7	0.75	0.86	0.11	0.021	2
BWMD14	Sep-21 Jul-20	0.005	0.0025	0.59	0.66	0.66	0.78	0.12	0.017	2
5111014	Aug-20		0.02	0.45	0.42	0.53	0.94	0.31	0.041	2
	Sep-20		0.011	0.47	0.49	0.49	0.76	0.27	0.031	2
I	Jul-21	0.047	0.011	0.42	0.46	0.51	0.89	0.38	0.036	3

	Aug-21	0.075	0.016	0.48	0.53	0.6	1.1	0.45	0.036	5
BWMD15	Sep-21 Jul-20	0.026	0.007	0.52	0.55	0.58	0.96	0.38	0.034	3
BWWIDI5	Aug-20	0.23	0.003	0.45	0.44	0.73	0.9	0.12	0.023	5
	Sep-20	0.28	0.009	0.45	0.46	0.74	0.95	0.21	0.021	2
	Jul-21	0.025	0.006	0.52	0.54	0.56	0.84	0.28	0.034	<2
	Aug-21	0.23	0.014	0.59	0.63	0.86	1.2	0.32	0.035	4
BWMD16	Sep-21 Jul-20	0.005	0.007	0.48	0.53	0.53	0.65	0.12	0.045	6 <2
DWINDIG	Aug-20	0.14	0.01	0.33	0.35	0.49	1.7	1.3	0.012	<2
	Sep-20	0.08	0.01	0.28	0.3	0.38	1.2	0.84	0.023	2
	Jul-21	0.23	0.0025	0.68	0.7	0.93	2	1	0.016	3
	Aug-21 Sep-21	0.22 0.2	0.0025 0.0025	0.33 0.41	0.35 0.49	0.57 0.69	1.1	0.54 1	0.007 0.008	<2 1
BWMD17	Jul-20	0.066	0.0023	0.57	0.62	0.69	0.76	0.074	0.032	3
	Aug-20	0.065	0.01	0.49	0.54	0.61	0.74	0.13	0.028	3
	Sep-20	0.005	0.007	0.48	0.52	0.52	0.61	0.086	0.024	2
	Jul-21	0.005	0.0025	0.44	0.46	0.46	0.67	0.22	0.027	2
	Aug-21 Sep-21	0.024	0.008	0.51 0.52	0.54 0.57	0.56 0.57	0.87 0.78	0.31 0.21	0.023 0.02	2 2
BWMD18	Jul-20	0.072	0.015	0.5	0.57	0.64	0.72	0.081	0.039	6
	Aug-20	0.097	0.009	0.45	0.48	0.58	0.72	0.15	0.024	3
	Sep-20	0.005	0.008	0.51	0.52	0.52	0.61	0.09	0.023	2
	Jul-21	0.026	0.000	0.5	0.55	0.50	0.70	0.21	0.024	
	Aug-21 Sep-21	0.036	0.006	0.5 0.48	0.55 0.49	0.58 0.49	0.79 0.77	0.21 0.28	0.024 0.019	4
BWMD19	Jul-20	0.14	0.038	0.9	0.98	1.1	1.1	0.032	0.075	6
	Aug-20	0.11	0.026	0.73	0.73	0.84	0.9	0.057	0.049	4
	Sep-20	0.012	0.019	0.59	0.65	0.66	0.71	0.05	0.046	3
	Jul-21 Aug-21	0.041	0.009	0.48 0.51	0.54 0.54	0.58 0.64	0.71 0.82	0.13 0.17	0.032 0.045	3 3
	Sep-21	0.005	0.0025	0.51	0.52	0.52	0.66	0.17	0.043	3
BWMD20	Jul-20	-	-	-	-	-	-	•	-	-
	Aug-20	-	-	-	-	-	-	-	-	-
	Sep-20 Jul-21	-		-	-	-		-	-	-
	Aug-21					-		-	-	-
	Sep-21	-	-	-	-	-	-	-	-	-
BWMD21	Jul-20	0.041	0.0025	0.36	0.42	0.46	0.51	0.043	0.029	2
	Aug-20	0.086	0.0025	0.4	0.43	0.52	0.66	0.14	0.016	2
	Sep-20 Jul-21	0.005	0.005	0.46 0.4	0.48 0.44	0.48 0.46	0.54 0.78	0.06	0.016 0.014	1 3
	Aug-21	0.034	0.0025	0.44	0.51	0.55	0.75	0.2	0.016	3
	Sep-21	0.005	0.0025	0.4	0.43	0.43	0.6	0.17	0.009	2
BWMD22	Jul-20	0.033	0.005	0.52	0.54	0.57	0.66	0.084	0.021	1
	Aug-20 Sep-20	0.013 0.02	0.0025 0.0025	0.53 0.5	0.54 0.51	0.55 0.53	0.62 0.57	0.069 0.038	0.01 0.014	<1 <1
	Jul-21	0.02	0.0025	0.52	0.53	0.55	1	0.44	0.025	2
	Aug-21	0.021	0.006	0.46	0.47	0.5	0.92	0.42	0.016	3
	Sep-21	0.005	0.0025	0.39	0.45	0.45	0.78	0.33	0.015	2
BWMD23	Jul-20 Aug-20	0.077	0.0025	0.5 -	- 0.54	0.62	0.69	0.074	0.021	<2
	Sep-20	0.005	0.0025	0.53	0.54	0.54	0.61	0.073	0.015	2
	Jul-21	0.042	0.007	0.53	0.57	0.61	1	0.43	0.024	5
	Aug-21	0.067	0.006	0.46	0.47	0.54	0.95	0.41	0.015	3
BWMD24	Sep-21 Jul-20	0.024	0.0025	0.48	0.48	0.51	0.85	0.34	0.012	2 8
BVVIVID24	Aug-20	0.033	0.098	0.38	0.54	0.58	0.61	0.036	0.16	28
	Sep-20	0.005	0.051	0.29	0.35	0.35	0.4	0.05	0.082	5
	Jul-21	-	-	-	-	-	-	-	-	-
	Aug-21 Sep-21	0.16 0.12	0.044	0.38 0.49	0.41 1.5	0.57 1.6	0.97 2.2	0.4 0.57	0.07 0.22	2 16
BWMD25	Jul-20	0.12	0.02	0.49	0.54	0.7	0.72	0.025	0.093	5
	Aug-20	0.005	0.028	0.44	0.54	0.54	0.54	0.005	0.067	4
	Sep-20	0.005	0.015	0.27	0.52	0.52	0.52	0.005	0.068	5
	Jul-21 Aug-21	0.061 0.005	0.02	0.38 0.52	0.56 0.87	0.62 0.87	0.69 1	0.072 0.15	0.08 0.096	5 4
	Sep-21	0.005	0.010	0.58	0.76	0.76	0.77	0.011	0.075	5
BWMD26	Jul-20	0.11	0.018	0.46	0.48	0.59	1.9	1.3	0.058	4
	Aug-20	0.09	0.013	0.27	0.34	0.44	1.5	1	0.086	9
	Sep-20 Jul-21	0.045	0.015 0.013	0.25 0.26	0.27 0.27	0.31 0.27	1.6 2.6	1.2 2.3	0.039 0.045	4 <1
	Aug-21	0.005	0.013	0.26	0.54	0.27	2.6	1.3	0.36	77
	Sep-21	0.011	0.01	0.22	0.23	0.24	1.1	0.87	0.035	1
BWMD27	Jul-20	-	-	-	-	-	-	-	-	-
	Aug-20 Sep-20	-								
	Sep-20 Jul-21	-		-	-	-		-	-	-
	Aug-21	-	-	-	-	-	-		-	-
	Sep-21	-	-	•	-	-	-	-	-	-
BWMD28	Jul-20	0.01	0.013	0.38	0.74	0.75	0.79	0.034	0.071	3
	Aug-20 Sep-20	- 0.005	- 0.007	- 0.47	- 0.47	- 0.47	- 0.49	- 0.022	- 0.021	- 2
	Jul-21	0.025	0.009	0.53	0.55	0.58	1	0.45	0.025	2
	Aug-21	0.016	0.005	0.46	0.48	0.49	0.9	0.41	0.015	2
	Sep-21	0.005	0.0025	0.4	0.42	0.42	0.74	0.32	0.013	1
DWA DOO						0 5 4	0.57	0.034	0.044	2
BWMD29	Jul-20	0.021	0.007	0.38	0.52					
BWMD29		0.021 0.057 0.005	0.007	0.58 0.5 0.54	0.52 0.55 0.55	0.61 0.55	0.7	0.1	0.024	<2 1

1	Aug-21	0.037	0.007	0.49	0.6	0.63	1.1	0.42	0.022	2
	Sep-21	0.005	0.0025	0.55	0.56	0.56	0.84	0.28	0.021	3
BWMD30	Jul-20	-	-	-	-	-	-	-	-	-
	Aug-20	-	-	-	-	-	-	-	-	-
	Sep-20	-	-	-	-	-	-	-	-	-
	Jul-21	-	-	-	-	-	-	-	-	-
	Aug-21	-	-	-	-	-	-	-	-	-
	Sep-21	0.005	0.0025	0.47	0.57	0.57	0.88	0.31	0.02	1
BWMD31	Jul-20	0.022	0.011	0.35	0.47	0.49	0.51	0.018	0.054	4
	Aug-20	0.037	0.037	0.48	0.5	0.54	0.54	0.005	0.054	3
	Sep-20	0.02	0.035	0.43	0.5	0.52	0.53	0.012	0.072	6
	Jul-21	0.005	0.009	0.31	0.53	0.53	0.61	0.077	0.059	19
	Aug-21	0.081	0.028	0.37	0.38	0.46	0.63	0.16	0.039	3
	Sep-21	0.005	0.019	0.39	0.42	0.42	0.45	0.033	0.054	3
WELDSQUARE1	Jul-20	0.079	0.012	0.91	1	1.1	1.1	0.016	0.05	5
	Aug-20	0.071	0.012	0.81	0.9	0.97	0.97	0.005	0.043	8
	Sep-20	0.057	0.01	0.63	0.98	1	1.1	0.019	0.084	14
	Jul-21	0.038	0.006	0.71	0.72	0.76	0.91	0.15	0.025	3
	Aug-21	0.028	0.006	0.69	0.7	0.73	0.86	0.13	0.025	4
	Sep-21	0.005	0.0025	0.63	0.63	0.63	0.75	0.12	0.022	2
WELDSQUARE2	Jul-20	0.046	0.011	0.83	0.88	0.93	0.97	0.043	0.047	4
	Aug-20	0.079	0.012	0.81	0.86	0.94	0.94	0.005	0.036	4
	Sep-20	0.07	0.012	0.64	0.7	0.77	0.78	0.017	0.035	6
	Jul-21	0.038	0.0025	0.7	0.71	0.75	0.92	0.17	0.025	2
	Aug-21	0.063	0.009	0.67	0.7	0.77	0.9	0.13	0.028	3
	Sep-21	0.005	0.0025	0.64	0.99	0.99	1.1	0.12	0.022	2

		iness as D3 (Calc)	рН	Aluminium Filterable	- Aluminium - Total	Chromium HMTV	Chromium - Filterable	Chromium - Total	Copper HMTV	Copper - Filterable	Copper - Total	Lead HMTV	Lead - Filterable	Lead - Total	Nickel HMTV	Nickel - Filterable	Nickel - Total	Zinc HMTV	Zinc - Filterable	Zinc - Total
LOR Unit	<1 mg/l		-	<0.005 mg/L	<0.005 mg/L		<0.0001 mg/L	<0.0001 mg/L		<0.0001 mg/L	<0.0001 mg/L		<0.0001 mg/L	<0.0001 mg/L		<0.0005 mg/L	<0.0005 mg/L		<0.001 mg/L	<0.005 mg/L
ANZG (2018) lowland river ANZG (2018) Recreational BWMD01 Ju		120	>6.5	0.055 0.2 0.17	0.53	0.001 0.82 0.0031	0.0013	0.002	0.0014 0.85 0.0045	0.0018	0.0025	0.0034 1.27 0.0198	0.0006	0.004.0	0.011 0.85 0.0357	0.0028	0.0043	0.008 0.85 0.0260	0.039	0.053
Aug Sep	-20	120 130 110	6.55 7.21	0.17 0.19 0.17	-	0.0033	0.0013 0.0008	-	0.0049 0.0042	0.0018	-	0.0198	0.0008	0.0016	0.0383	0.0028	-	0.0278 0.0241	0.039	-
Ju Aug	-21	92 160	6.91 7.34	0.18 0.21	0.45	0.0025	0.001 0.0012	0.0014	0.0036 0.0058	0.0031 0.005	0.0039	0.0141 0.0285	0.001 0.0009	0.0028	0.0285 0.0456	0.0023 0.0031	0.0023	0.0207 0.0332	0.061 0.048	0.064
Sep BWMD02 Ju	-21 -20	150 110	7.09	0.18	- 0.11	0.0037	0.0012	- 0.0011	0.0055	0.0074	- 0.0017	0.0263	0.0008	- 0.0011	0.0432	0.0033	- 0.0012	0.0314	0.064	- 0.029
Aug Sep	-20	130 120	7.03 6.86	0.047	-	0.0033	0.0007	-	0.0049	0.0034	-	0.0219	0.0004	-	0.0383	0.0012	-	0.0278	0.023	-
Ju Aug Sep	-21	150 150	7.13 7.46 7.21	0.14 0.19 0.085	0.33	0.0037 0.0037 0.0000	0.0009 0.0008 0.0007	0.0011	0.0055 0.0055 0.0000	0.0037 0.0025 0.0031	0.0042	0.0263 0.0263 0.0000	0.0009 0.0005 0.0004	0.0013	0.0432 0.0432 0.0000	0.001 0.0007 0.0007	0.0025	0.0314 0.0314 0.0000	0.042 0.025 0.022	0.032
BWMD03 Ju Aug	-20	- 130	- 6.92	- 0.26	:	- 0.0033	- 0.0014	:	- 0.0049	- 0.0036	:	- 0.0219	- 0.0009	1	- 0.0383	- 0.0041	1	- 0.0278	- 0.049	:
Sep Ju	-20	110 96	6.9 6.82	0.21 0.18	- 0.51	0.0029	0.0009	- 0.0014	0.0042 0.0038	0.002 0.0031	- 0.0038	0.0177 0.0149	0.0006	- 0.0031	0.0332 0.0296	0.0019 0.0022	- 0.0025	0.0241 0.0215	0.047 0.059	- 0.069
Aug Sep	-21	150 150	7.07 6.89	0.23	•	0.0037 0.0037	0.0013 0.0012	-	0.0055	0.0027 0.0018		0.0263	0.0009 0.0007	-	0.0432 0.0432	0.0034 0.0032		0.0314 0.0314	0.054 0.074	1
BWMD04 Ju Aug	-20	120 120 100	7.03 6.92 6.82	0.24 0.29 0.25	0.64	0.0031 0.0031 0.0027	0.0017 0.0015 0.001	0.0023	0.0045 0.0045 0.0039	0.0018 0.0028 0.0026	0.0023	0.0198 0.0198 0.0157	0.0008 0.001 0.0006	0.0017	0.0357 0.0357 0.0306	0.0036 0.0044 0.0021	0.0047	0.0260 0.0260 0.0223	0.046 0.049 0.053	0.058
Sep Jui Aug	-21	96 140	6.72 7.01	0.19	0.51	0.0027	0.0009	0.0015	0.0039	0.0025	0.0038	0.0137 0.0149 0.0241	0.0009	0.0032	0.0296	0.0021 0.0024 0.0032	0.0027	0.0225	0.061 0.043	0.065
BWMD05 Ju	-21	140 220	6.97	0.16	- 1.4	0.0035	0.0013	- 0.0017	0.0052	0.0013	- 0.0026	0.0241	0.0008	- 0.0009	0.0407	0.0033	- 0.0088	0.0296	0.048	- 0.14
Aug Sep	-20	110 87	7.11 7.03	0.08 0.097	:	0.0029 0.0024	0.0018 0.001		0.0042	0.0022 0.0017	-	0.0177 0.0131	0.0013 0.0008	:	0.0332	0.0024 0.0013	-	0.0241 0.0198	0.028 0.037	
Ju Aug	-21	71 170	7.19 6.62	0.16	0.26	0.0020	0.0013	0.0015	0.0029	0.0024	0.0028	0.0102	0.0014	0.0029	0.0229	0.0017	0.0018	0.0166	0.05	0.047
Sep BWMD06 Ju Aug	-20	100 230 200	7.1 6.55 6.3	0.12 0.59 0.75	1.5	0.0027 0.0053 0.0047	0.0014 0.0011 0.001	- 0.0019	0.0039 0.0079 0.0070	0.003	- 0.0027	0.0157 0.0452 0.0378	0.0012	0.0012	0.0306 0.0621 0.0552	0.0022 0.0074 0.0069	- 0.0087	0.0223 0.0452 0.0401	0.027 0.14 0.13	0.14
Sep Ju	-20	110 110	6.44 6.97	0.43	- 0.57	0.0029	0.0007	- 0.0015	0.0042	0.0014 0.0019 0.0038	0.0047	0.0378	0.0005		0.0332	0.0026	- 0.0029	0.0241	0.094 0.081	0.076
Aug	-21 -21	110 180	7.2 6.51	0.14 0.19	:	0.0029 0.0043	0.0015 0.0009		0.0042	0.0018 0.0016	1	0.0177	0.0011 0.0004	-	0.0332 0.0504	0.0022 0.0037	1	0.0241 0.0367	0.028 0.074	
BWMD07 Ju Aug	-20	120 110	6.63 6.53	0.086	0.14	0.0031 0.0029	0.0013 0.0012	0.0016	0.0045 0.0042	0.0019 0.0025	0.0032	0.0198 0.0177	0.0006 0.0007	0.0011	0.0357 0.0332	0.0024 0.0025	0.003	0.0260 0.0241	0.039 0.047	0.045
Sep Jui Aug	-21	72 89 120	6.33 7.22 6.53	0.1 0.12 0.18	0.35	0.0021 0.0024 0.0031	0.0007 0.001 0.0011	- 0.0022	0.0029 0.0035 0.0045	0.0023 0.0027 0.0017	- 0.0039	0.0103 0.0135 0.0198	0.0006 0.0009 0.0007	0.0028	0.0232 0.0277 0.0357	0.001 0.0013 0.0014	0.0014	0.0168 0.0202 0.0260	0.045 0.046 0.031	0.035
Sep BWMD08 Ju	-21	110	6.65	0.13	0.15	0.0031 0.0029 0.0031	0.0011 0.001 0.0014	0.0015	0.0043 0.0045	0.0017	0.0066	0.0198 0.0177 0.0198	0.0005	0.001	0.0332	0.0012	0.0029	0.0260	0.031	0.043
Aug	-20	110 74	6.48 6.38	0.098	-	0.0029	0.0012	-	0.0042	0.0027	-	0.0177 0.0107	0.0006	-	0.0332	0.0022	-	0.0241 0.0172	0.042	-
Ju Aug	-21 -21	86 120	7.32 6.48	0.12	0.34	0.0024 0.0031	0.001 0.0012	0.0014	0.0034 0.0045	0.0029 0.0015	0.0038	0.0130 0.0198	0.0009 0.0007	0.0027	0.0269 0.0357	0.0012 0.0014	0.0013	0.0196 0.0260	0.054 0.03	0.035
Sep BWMD09 Ju	-20	120 36	6.62 6.46	0.15	- 0.3	0.0031	0.001	- 0.005	0.0045	0.0012	- 0.015	0.0198	0.0005	- 0.0076	0.0357	0.0012	0.006	0.0260	0.021	- 0.24
Aug Sep Ju	-20	- - 72	- 5.99 6.47	0.25	0.31	0.0021		0.0019	- - 0.0029	- - 0.0029	- - 0.0049	0.0103	- - 0.002		0.0232	- - 0.0045	- - 0.0052	- - 0.0168	0.065	- - 0.059
Aug	-21	-	6.59 6.44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BWMD10 Ju Aug		1	- 6.2		:	:	-	-	:	-		-	-	:	-		-	1	-	-
Sep Ju	-21	- 96	6.48 6.25	- 0.37	- 0.51	- 0.0026	- 0.0014	- 0.0015	- 0.0038	- 0.0033	- 0.0032	- 0.0149	- 0.0016	- 0.0027	- 0.0296	- 0.0019	- 0.0031	- 0.0215	- 0.05	- 0.038
Aug Sep BWMD11 Ju	-21	- - 98	6.1 6.66 5.95	0.19	0.26	0.0026	0.0014	0.0017			0.0031	0.0153	0.0013		0.0301	0.0015	- - 0.0016	0.0219	0.037	- - 0.039
Aug Sep	-20	98 110 96	6.14 6.15	0.19	-	0.0028	0.0014 0.0013 0.001	-	0.0038	0.0013	-	0.0133	0.0009	-	0.0332	0.0015	-	0.0219	0.024	-
Ju Aug	-21	91 99	6.46 6.28	0.28	0.34	0.0025 0.0027	0.0013 0.0011	0.0015	0.0036	0.0026	0.0033	0.0139 0.0155	0.0014 0.0007	0.0026	0.0283 0.0303	0.0011 0.0008	0.0014	0.0205 0.0221	0.043	0.034
Sep BWMD12 Ju	-20	72 54	6.38 5.81	0.17	- 0.35	0.0021	0.0009	- 0.0018	0.0029	0.0022	- 0.005	0.0103	0.0009	- 0.0053	0.0232	0.0007	- 0.0013	0.0168	0.048	- 0.053
Aug Sep Jui	-20	68 69 66	5.92 6.21 6.46	0.45 0.26 0.31	0.34	0.0020 0.0020 0.0019	0.0015 0.0009 0.0014	0.0012	0.0028 0.0028 0.0027	0.0028 0.00005 0.002	0.0025	0.0096 0.0098 0.0093	0.002 0.0009 0.0016	0.002	0.0221 0.0223 0.0215	0.0012 0.0006 0.0009	0.001	0.0160 0.0162 0.0156	0.024 0.021 0.037	- - 0.036
Aug Sep	-21	82 67	6.71 6.36	0.26	-	0.0019	0.0014 0.0012 0.001	-	0.0027	0.002	-	0.0093	0.0018	-	0.0213	0.0007	-	0.0138	0.019	-
BWMD13 Ju Aug	-20	77 82	5.51 5.31	0.36 0.48	0.63	0.0022 0.0023	0.0018 0.0015	0.0025	0.0031 0.0033	0.002 0.0016	0.0033	0.0113 0.0122	0.0013 0.0008	0.0034	0.0245 0.0259	0.0015	0.0015	0.0178 0.0188	0.029 0.025	0.035
Sep Ju	-21	72 -	5.63	0.35	:	0.0021	0.001		0.0029 #VALUE!	0.00005	1	0.0103	0.001	:	0.0232	0.0007	1	0.0168	0.023	
Aug Sep	-21	81 69	6.54 6.3	0.31		0.0023	0.0011 0.0009	-	0.0033	0.0014	-	0.0120	0.0008	-	0.0256	0.0007	-	0.0186	0.02	-
BWMD14 Ju Aug Sep	-20	83 92 85	6.87 6.79 6.74	0.09 0.074 0.093	0.2	0.0023 0.0025 0.0023	0.0021 0.0019 0.0011	0.0025	0.0033 0.0036 0.0034	0.0013 0.0016 0.0016	0.002	0.0124 0.0141 0.0128	0.0008 0.0011 0.0009	0.0015	0.0261 0.0285 0.0267	0.0016 0.0029 0.0013	0.0021	0.0190 0.0207 0.0194	0.023 0.025 0.043	0.026
Ju Aug	-21	72 110	7.24	0.14	0.25	0.0021	0.0013 0.0016	0.002	0.0029	0.0019	0.0026	0.0103	0.0012	0.0021	0.0232	0.0015	0.041	0.0168	0.051	0.043
Sep BWMD15 Ju	-21 -20	100 59	6.92 6.31	0.1	- 0.29	0.0027	0.0015	- 0.0048	0.0039	0.001	- 0.0017	0.0157	0.0008	- 0.0006	0.0306	0.0024	- 0.0028	0.0223	0.023	- 0.13
Aug Sep	-20	-	6.37 6.32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ju Aug Sep	-21	70 - -	6.53 6.21 6.77	0.25	0.29	0.0020 - -	0.0035	0.0037	0.0029 - -	0.0023	0.0025	0.0100	0.001	0.0014	0.0226	0.0036	0.0038 - -	0.0164	0.59 - -	0.63
BWMD16 Ju Aug	-20	89 93	6.43 6.28	0.19 0.15	0.24	0.0024	0.027	0.031	0.0035	0.0016	0.0022	0.0135	0.0005	0.0007	0.0277	0.23 0.24	0.23	0.0202	0.012	0.018
Sep Ju	-20 -21	94 120	6.1 6.86	0.19	- 0.51	0.0026 0.0031	0.019 0.018	- 0.022	0.0037 0.0045	0.002 0.0013	- 0.0024	0.0145 0.0198	0.0007 0.0007	- 0.0016	0.0290 0.0357	0.24 0.21	- 0.27	0.0211 0.0260	0.075 0.03	- 0.02
Aug	-21	98 91	6.11 6.29	0.17	-	0.0026	0.021	-	0.0038	0.0006		0.0153	0.0006	-	0.0301 0.0283	0.25	-	0.0219	0.025	-
BWMD17 Ju Aug Sep	-20	90 92 83	6.86 6.79 6.89	0.11 0.093 0.11	0.26	0.0025 0.0025 0.0023	0.0011 0.0009 0.0008	0.0014	0.0036 0.0036 0.0033	0.0016 0.0019 0.0017	0.0019	0.0137 0.0141 0.0124	0.0012 0.0013 0.0007	0.002	0.0280 0.0285 0.0261	0.0012 0.0013 0.0015	0.0012 - -	0.0204 0.0207 0.0190	0.028 0.033 0.038	0.028
Ju Aug	-21	53 110	6.99 6.71	0.12	0.19	0.0016 0.0029	0.0008	0.0013	0.0023	0.0024	0.0025	0.0070	0.0011 0.0009	0.0017	0.0178 0.0332	0.0007 0.0012	0.0006	0.0130 0.0241	0.047	0.046
Sep BWMD18 Ju	-21 -20	79 71	7.22	0.12	. 0.13	0.0022	0.0007	- 0.0013	0.0032	0.0067	- 0.0018	0.0116	0.0008	- 0.0012	0.0251	0.00025	- 0.0008	0.0182	0.045	- 0.03
Aug Sep	-20	110 84	6.84 6.64	0.082		0.0029 0.0023	0.0008 0.0008		0.0042 0.0034	0.0015 0.0018		0.0177 0.0126	0.0011 0.0007	-	0.0332 0.0264	0.0016 0.0008	-	0.0241 0.0192	0.036 0.04	1
Ju Aug Sep	-21	120 80	6.59 6.66 7.47	0.13 0.13	-	0.0031	0.001 0.0008	-	0.0045	0.0014		0.0198 0.0118	0.0008 0.0009	-	0.0357 0.0253	0.0008	-	0.0000 0.0260 0.0184	0.029 0.042	
BWMD19 Ju Aug	-20	120 89	6.3 6.25	0.13	0.25	0.0022	0.0018 0.0014	0.0022	0.0032	0.0043	0.0013	0.0118	0.0009 0.0014	0.0017	0.0233	0.00023	0.001	0.0184 0.0260 0.0202	0.005 0.017	0.009
Sep	-20 -21	86 71	6.24 6.68	0.13	- 0.2	0.0024 0.0020	0.0009 0.0011	0.0013	0.0034 0.0029	0.0012	- 0.0084	0.0130 0.0102	0.0009 0.0017	- 0.0029	0.0269 0.0229	0.0006 0.0006	- 0.0007	0.0196 0.0166	0.034 0.073	- 0.065
Aug Sep	-21 -21	110 89	6.34 6.87	0.16 0.11	-	0.0029 0.0024	0.0012	-	0.0042 0.0035	0.001 0.0029	-	0.0177 0.0135	0.0013 0.0011	-	0.0332 0.0277	0.0018 0.0005	-	0.0241 0.0202	0.039 0.046	
BWMD20 Ju Aug	-20	-		-	:	-		-	-	-	-	-	-	-	:	:	-	-		
Sep Jul Aug	-21	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Sep		65	- - 6.92	0.087	0.16		- - 0.0008		0.0027		0.0026	0.0091	- - 0.0009	0.0013	0.0212	- - 0.0006	- - 0.0008	0.0154		
Ju Ju	20	0.0	0.92	0.087	0.10	0.0019	0.0008	0.0009	0.0027	0.0019	0.0026	0.0091	0.0009	0.0013	0.0212	0.0006	0.0008	0.0154	0.032	0.038

1	Aug-20	110	6.99	0.073		0.0029	0.0007		0.0042	0.0017	-	0.0177	0.0012		0.0332	0.0015		0.0241	0.04	-
	Sep-20	71	6.73	0.11		0.0020	0.0007	-	0.0029	0.0021	-	0.0102	0.0005		0.0229	0.0009	-	0.0166	0.037	
	Jul-21	63	6.67	0.14	0.18	0.0018	0.0009	0.0009	0.0026	0.0032	0.0023	0.0087	0.0008	0.0012	0.0207	0.0005	0.0005	0.0150	0.046	0.031
	Aug-21 Sep-21	120 79	6.95 7.45	0.11		0.0031 0.0022	0.0009	-	0.0045	0.001 0.0026	-	0.0198 0.0116	0.0006		0.0357 0.0251	0.0012		0.0260 0.0182	0.024	
BWMD22	Jul-20	76	6.66	0.16	0.21	0.0021	0.0012	0.0014	0.0031	0.0018	0.0023	0.0110	0.0001	0.0015	0.0232	0.0005	0.0007	0.0102	0.008	0.017
	Aug-20	71	6.59	0.14	-	0.0020	0.0011	-	0.0029	0.0012	-	0.0102	0.0009	-	0.0229	0.001	-	0.0166	0.014	-
	Sep-20	80	6.19	0.18		0.0022	0.0009	-	0.0032	0.0015	-	0.0118	0.0007	-	0.0253	0.00025	-	0.0184	0.019	-
	Jul-21 Aug-21	84 95	6.47 6.42	0.23	0.31	0.0023	0.0011 0.001	0.0013	0.0034	0.002	0.0023	0.0126 0.0147	0.0015	0.0023	0.0264	0.0006	0.0007	0.0192	0.029	0.019
	Sep-21	77	7.21	0.19		0.0022	0.0008		0.0031	0.0021		0.0113	0.0009		0.0245	0.00025		0.0178	0.037	
BWMD23	Jul-20	73	6.4	0.16	0.23	0.0021	0.0012	0.0014	0.0030	0.0013	0.0013	0.0105	0.0005	0.0009	0.0234	0.00025	0.0006	0.0170	0.006	0.013
	Aug-20	- 74	- 6.38	- 0.2		- 0.0021	- 0.0009		- 0.0030	- 0.0011	-	- 0.0107	- 0.0005		- 0.0237	- 0.0006	-	- 0.0172	- 0.023	
	Sep-20 Jul-21	83	6.41	0.24	0.31	0.0021	0.0009	0.0013	0.0030	0.0011	0.0018	0.0107	0.0005	0.0015	0.0257	0.0006	- 0.0007	0.0172	0.025	0.014
	Aug-21	89	6.22	0.26		0.0024	0.0011	-	0.0035	0.0011	-	0.0135	0.0009	-	0.0277	0.0005	-	0.0202	0.021	-
	Sep-21	72	6.63	0.2		0.0021	0.0008	-	0.0029	0.0017	-	0.0103	0.0008	-	0.0232	0.00025	-	0.0168	0.029	
BWMD24	Jul-20 Aug-20	52 51	6.52 6.44	0.06	0.21	0.0016	0.0012	0.0021	0.0022	0.0044 0.0031	0.012	0.0068	0.0017 0.0013	0.0077	0.0176 0.0173	0.0014 0.0028	0.0019	0.0128 0.0126	0.052	0.12
	Sep-20	37	6.43	0.041		0.0013	0.0003		0.0017	0.0026		0.0044	0.0013		0.0173	0.0028		0.0026	0.052	1
	Jul-21	-	-	-			-		-		-		-		-			-		
	Aug-21	110 99	6.37	0.069		0.0029	0.0008	-	0.0042	0.0015	-	0.0177	0.0008		0.0332	0.0008	-	0.0241	0.023	
BWMD25	Sep-21 Jul-20	99 60	6.65 6.71	0.066	0.061	0.0027	0.0007	- 0.0011	0.0039	0.0011	0.0028	0.0155	0.0007	- 0.0019	0.0303 0.0198	0.0022	0.001	0.0221 0.0144	0.023	- 0.017
	Aug-20	70	6.78	0.039	-	0.0020	0.0009	-	0.0029	0.0019	-	0.0100	0.0014	-	0.0226	0.0025	-	0.0164	0.024	-
	Sep-20	37	9.12	0.037		0.0012	0.0004	-	0.0017	0.0033	-	0.0044	0.0051		0.0131	0.0007	-	0.0096	0.043	
	Jul-21 Aug-21	52 100	6.55 6.77	0.053 0.045	0.13	0.0016	0.0008	0.0009	0.0022	0.0044 0.0013	0.0038	0.0068 0.0157	0.0009	0.0021	0.0176 0.0306	0.0007	0.0008	0.0128 0.0223	0.041	0.025
	Sep-21	86	6.96	0.045		0.0024	0.0007		0.0033	0.0015	-	0.0130	0.0003		0.0269	0.00015		0.0196	0.027	
BWMD26	Jul-20	200	6.46	0.03	0.066	0.0047	0.0007	0.0009	0.0070	0.0016	0.0019	0.0378	0.00005	0.0003	0.0552	0.0024	0.0033	0.0401	0.37	0.44
	Aug-20	210	6.48	0.034		0.0049	0.0008		0.0073	0.0023	-	0.0402	0.00005		0.0575	0.0028	-	0.0418	0.3	
	Sep-20 Jul-21	190 190	6.29 6.57	0.047	- 0.31	0.0045	0.0005	- 0.0013	0.0067	0.0015	- 0.0092	0.0354 0.0354	0.0001	- 0.0048	0.0528	0.0017	- 0.0032	0.0384 0.0384	0.29 0.39	- 0.46
	Aug-21	200	6.67	0.037	-	0.0045	0.0006	-	0.0070	0.0024	-	0.0378	0.00005	-	0.0552	0.0022	-	0.0401	0.28	-
	Sep-21	190	6.43	0.039		0.0045	0.0006		0.0067	0.0013	-	0.0354	0.00005		0.0528	0.0019		0.0384	0.24	
BWMD27	Jul-20 Aug-20	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-		-
	Sep-20					-	-				-						-	-		
1	Jul-21	-			-	-	-	-	-		-	-			-		-	-		
	Aug-21	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-
BWMD28	Sep-21 Jul-20	- 64	- 7.18	- 0.091	0.13	0.0019	- 0.0008	- 0.0009	- 0.0027	- 0.0026	0.003	- 0.0089	- 0.0007	- 0.001	- 0.0209	- 0.0006	- 0.0006	- 0.0152	- 0.04	- 0.044
54111520	Aug-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Sep-20	66	6.67	0.15		0.0019	0.0008	-	0.0027	0.0018	-	0.0093	0.0007		0.0215	0.0015	-	0.0156	0.024	
	Jul-21 Aug-21	82 93	6.81 6.54	0.21	0.27	0.0023	0.0011	0.0013	0.0033	0.0033	0.0025	0.0122	0.0014	0.0023	0.0259	0.0006	0.0008	0.0188	0.029	0.021
	Sep-21	78	6.94	0.17		0.0022	0.0001		0.0032	0.0021	-	0.0143	0.0011		0.0288	0.00025		0.0180	0.022	
BWMD29	Jul-20	60	7.08	0.074	0.077	0.0018	0.0008	0.0009	0.0025	0.0024	0.0027	0.0082	0.0002	0.0003	0.0198	0.0006	0.0006	0.0144	0.049	0.049
	Aug-20	71	6.59	0.11	•	0.0020	0.001		0.0029	0.0026	-	0.0102	0.001		0.0229	0.001	-	0.0166	0.037	
	Sep-20 Jul-21	66 67	6.46	0.14	- 0.22	0.0019 0.0019	0.0008	- 0.0018	0.0027	0.0024	- 0.0053	0.0093	0.0008	- 0.003	0.0215 0.0218	0.0013	- 0.0014	0.0156 0.0158	0.047	- 0.024
	Aug-21	95	6.55	0.18	-	0.0026	0.001	-	0.0037	0.0016	-	0.0147	0.001	-	0.0293	0.0006	-	0.0213	0.024	
	Sep-21	79	6.84	0.15		0.0022	0.0009	-	0.0032	0.0029	-	0.0116	0.0009		0.0251	0.00025	-	0.0182	0.047	
BWMD30	Jul-20 Aug-20	-				-	-	-	-		-	-			-		-	-		
	Sep-20										-				-					
	Jul-21	-	-		-	-	-	-	-		-	-	-		-		-	-		-
	Aug-21 Sep-21	- 79	- 6.7	- 0.14		- 0.0022	- 0.0008		- 0.0032	- 0.0025		- 0.0116	- 0.0008		- 0.0251	- 0.00025	1	- 0.0182	- 0.046	
1			6.33	0.14	0.092	0.0022	0.0008	0.0011	0.0032	0.0023	0.0015	0.00118	0.0008	0.0034	0.0231	0.00025	- 0.0006	0.0182	0.048	0.023
BWMD31	Jul-20	69								0.0009		0.0126	0.0015		0.0264			0.0192	0.016	
BWMD31	Jul-20 Aug-20	84	6.16	0.081		0.0023	0.0012	-	0.0034							0.001	-			-
BWMD31	Aug-20 Sep-20	84 87	6.16 5.8	0.086		0.0024	0.0008	-	0.0035	0.00005		0.0131	0.001	-	0.0272	0.0007		0.0198	0.04	
BWMD31	Aug-20 Sep-20 Jul-21	84 87 43	6.16 5.8 6.88	0.086	0.48	0.0024 0.0013	0.0008 0.0008	0.0019	0.0035 0.0019	0.00005	0.0057	0.0131 0.0054	0.001 0.0014	- 0.0092	0.0272 0.0149	0.0007	0.0009	0.0198 0.0109	0.04 0.1	0.12
BWMD31	Aug-20 Sep-20	84 87	6.16 5.8	0.086		0.0024	0.0008		0.0035	0.00005	0.0057	0.0131	0.001	- 0.0092	0.0272	0.0007	- - 0.0009 -	0.0198	0.04	- 0.12 -
BWMD31 WELDSQUARE1	Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20	84 87 43 100 67 72	6.16 5.8 6.88 6.44 7.42 5.52	0.086 0.12 0.13 0.076 0.32	- 0.48 - - 0.4	0.0024 0.0013 0.0027 0.0019 0.0021	0.0008 0.0008 0.001 0.0007 0.0016	- - 0.0021	0.0035 0.0019 0.0039 0.0028 0.0029	0.00005 0.0031 0.0012 0.0024 0.0026	0.0057	0.0131 0.0054 0.0157 0.0094 0.0103	0.001 0.0014 0.0011 0.0009 0.0013	- 0.0092 - - 0.002	0.0272 0.0149 0.0306 0.0218 0.0232	0.0007 0.00025 0.0008 0.0005 0.0013	- 0.0009 - - 0.0013	0.0198 0.0109 0.0223 0.0158 0.0168	0.04 0.1 0.054 0.066 0.034	- 0.12 - - - 0.037
	Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20 Aug-20	84 87 43 100 67 72 82	6.16 5.8 6.88 6.44 7.42 5.52 5.64	0.086 0.12 0.13 0.076 0.32 0.42	- - 0.4 -	0.0024 0.0013 0.0027 0.0019 0.0021 0.0023	0.0008 0.0008 0.001 0.0007 0.0016 0.0014	- - 0.0021 -	0.0035 0.0019 0.0039 0.0028 0.0029 0.0033	0.00005 0.0031 0.0012 0.0024 0.0026 0.0035	-	0.0131 0.0054 0.0157 0.0094 0.0103 0.0122	0.001 0.0014 0.0011 0.0009 0.0013 0.0007		0.0272 0.0149 0.0306 0.0218 0.0232 0.0259	0.0007 0.00025 0.0008 0.0005 0.0013 0.0011	- - 0.0013 -	0.0198 0.0109 0.0223 0.0158 0.0168 0.0188	0.04 0.1 0.054 0.066 0.034 0.029	:
	Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20	84 87 43 100 67 72	6.16 5.8 6.88 6.44 7.42 5.52	0.086 0.12 0.13 0.076 0.32	•	0.0024 0.0013 0.0027 0.0019 0.0021	0.0008 0.0008 0.001 0.0007 0.0016	- - 0.0021	0.0035 0.0019 0.0039 0.0028 0.0029	0.00005 0.0031 0.0012 0.0024 0.0026	-	0.0131 0.0054 0.0157 0.0094 0.0103	0.001 0.0014 0.0011 0.0009 0.0013		0.0272 0.0149 0.0306 0.0218 0.0232	0.0007 0.00025 0.0008 0.0005 0.0013		0.0198 0.0109 0.0223 0.0158 0.0168	0.04 0.1 0.054 0.066 0.034	:
	Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20 Aug-20 Sep-20	84 87 43 100 67 72 82 73 67 81	6.16 5.8 6.88 6.44 7.42 5.52 5.64 5.64 6.19 6.59	0.086 0.12 0.13 0.076 0.32 0.42 0.32 0.37 0.31	- - 0.4 -	0.0024 0.0013 0.0027 0.0019 0.0021 0.0023 0.0021 0.0021 0.0019 0.0023	0.0008 0.0008 0.001 0.0007 0.0016 0.0014 0.0011 0.001 0.0012	- - 0.0021 - -	0.0035 0.0019 0.0039 0.0028 0.0029 0.0033 0.0030 0.0028 0.0033	0.00005 0.0031 0.0012 0.0024 0.0026 0.0035 0.0007 0.0049 0.011	- - 0.0034 - -	0.0131 0.0054 0.0157 0.0094 0.0103 0.0122 0.0105 0.0094 0.0120	0.001 0.0014 0.0011 0.0009 0.0013 0.0007 0.0008 0.0011 0.0009	- - 0.002 - -	0.0272 0.0149 0.0306 0.0218 0.0232 0.0259 0.0234 0.0218 0.0256	0.0007 0.00025 0.0008 0.0005 0.0013 0.0011 0.0007 0.0006 0.0007	- - 0.0013 - -	0.0198 0.0109 0.0223 0.0158 0.0168 0.0188 0.0170 0.0158 0.0186	0.04 0.1 0.054 0.066 0.034 0.029 0.022 0.034 0.033	- - 0.037 - -
WELDSQUARE1	Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20 Aug-20 Sep-20 Jul-21 Aug-21 Sep-21	84 87 43 100 67 72 82 73 67 81 69	6.16 5.8 6.88 6.44 7.42 5.52 5.64 5.64 6.19 6.59 6.32	0.086 0.12 0.13 0.076 0.32 0.42 0.32 0.37 0.31 0.24	- 0.4 - 0.4 - -	0.0024 0.0013 0.0027 0.0019 0.0021 0.0023 0.0021 0.0019 0.0023 0.0020	0.0008 0.0008 0.001 0.0007 0.0016 0.0014 0.0011 0.0011 0.0012 0.001	- 0.0021 - - 0.0018 -	0.0035 0.0019 0.0039 0.0028 0.0029 0.0033 0.0030 0.0028 0.0033 0.0033	0.00005 0.0031 0.0012 0.0024 0.0026 0.0035 0.0007 0.0049 0.011 0.0015	- - - - - - - - - - - - - - - -	0.0131 0.0054 0.0157 0.0094 0.0103 0.0122 0.0105 0.0094 0.0120 0.0098	0.001 0.0014 0.0011 0.0009 0.0013 0.0007 0.0008 0.0011 0.0009 0.0009	- 0.002 - 0.0024 - -	0.0272 0.0149 0.0306 0.0218 0.0232 0.0259 0.0234 0.0218 0.0256 0.0223	0.0007 0.00025 0.0008 0.0005 0.0013 0.0011 0.0007 0.0006 0.0007 0.0006	- 0.0013 - - 0.0012 - -	0.0198 0.0109 0.0223 0.0158 0.0168 0.0188 0.0170 0.0158 0.0186 0.0162	0.04 0.1 0.054 0.066 0.034 0.029 0.022 0.034 0.033 0.031	- - - - - - 0.025 - - -
	Aug-20 Sep-20 Jul-21 Aug-21 Jul-20 Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20	84 87 43 100 67 72 82 73 67 81 69 62	6.16 5.8 6.88 6.44 7.42 5.52 5.64 5.64 6.19 6.59 6.32 5.57	0.086 0.12 0.13 0.076 0.32 0.42 0.32 0.37 0.31 0.24 0.29	- - - - - - - - - - - - - - - - - - -	0.0024 0.0013 0.0027 0.0019 0.0021 0.0023 0.0021 0.0019 0.0023 0.0020 0.0018	0.0008 0.0008 0.001 0.0007 0.0016 0.0014 0.0011 0.0012 0.0012 0.0014	- - - - 0.0018 - - - 0.0019	0.0035 0.0019 0.0039 0.0028 0.0029 0.0033 0.0030 0.0028 0.0033 0.0028 0.0028	0.00005 0.0031 0.0012 0.0024 0.0026 0.0035 0.0007 0.0049 0.011 0.0015 0.0034	- - - 0.0034 - - - - - - - 0.0025	0.0131 0.0054 0.0157 0.0094 0.0103 0.0122 0.0105 0.0094 0.0120 0.0098 0.0085	0.001 0.0014 0.0011 0.0009 0.0013 0.0007 0.0008 0.0011 0.0009 0.0009 0.0009	- 0.002 - 0.0024 - - 0.0037	0.0272 0.0149 0.0306 0.0218 0.0232 0.0259 0.0234 0.0218 0.0256 0.0223 0.0204	0.0007 0.00025 0.0008 0.0005 0.0013 0.0011 0.0007 0.0006 0.0007 0.0006 0.00014	- 0.0013 - 0.0012 - - 0.0014	0.0198 0.0109 0.0223 0.0158 0.0168 0.0188 0.0170 0.0158 0.0186 0.0162 0.0148	0.04 0.1 0.054 0.066 0.034 0.029 0.022 0.034 0.033 0.031 0.049	- - - - - - - - - - - - - - - - - - -
WELDSQUARE1	Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20 Aug-20 Sep-20 Jul-21 Aug-21 Sep-21	84 87 43 100 67 72 82 73 67 81 69	6.16 5.8 6.88 6.44 7.42 5.52 5.64 5.64 6.19 6.59 6.32	0.086 0.12 0.13 0.076 0.32 0.42 0.32 0.37 0.31 0.24	- 0.4 - 0.4 - -	0.0024 0.0013 0.0027 0.0019 0.0021 0.0023 0.0021 0.0019 0.0023 0.0020	0.0008 0.0008 0.001 0.0007 0.0016 0.0014 0.0011 0.0011 0.0012 0.001	- 0.0021 - - 0.0018 -	0.0035 0.0019 0.0039 0.0028 0.0029 0.0033 0.0030 0.0028 0.0033 0.0033	0.00005 0.0031 0.0012 0.0024 0.0026 0.0035 0.0007 0.0049 0.011 0.0015	- - - - - - - - - - - - - - - -	0.0131 0.0054 0.0157 0.0094 0.0103 0.0122 0.0105 0.0094 0.0120 0.0098	0.001 0.0014 0.0011 0.0009 0.0013 0.0007 0.0008 0.0011 0.0009 0.0009	- 0.002 - 0.0024 - -	0.0272 0.0149 0.0306 0.0218 0.0232 0.0259 0.0234 0.0218 0.0256 0.0223	0.0007 0.00025 0.0008 0.0005 0.0013 0.0011 0.0007 0.0006 0.0007 0.0006	- 0.0013 - - 0.0012 - -	0.0198 0.0109 0.0223 0.0158 0.0168 0.0188 0.0170 0.0158 0.0186 0.0162	0.04 0.1 0.054 0.066 0.034 0.029 0.022 0.034 0.033 0.031	- - - - - - 0.025 - - -
WELDSQUARE1	Aug-20 Sep-20 Jul-21 Sep-21 Jul-20 Aug-20 Sep-20 Jul-21 Jul-21 Jul-20 Aug-20 Sep-20 Jul-20 Sep-20 Jul-21	84 87 43 100 67 72 82 73 67 81 69 62 85 73 67	6.16 5.8 6.88 6.44 7.42 5.52 5.64 5.64 6.19 6.59 6.32 5.57 5.87 5.87 5.8 6.3	0.086 0.12 0.13 0.076 0.32 0.32 0.32 0.37 0.31 0.24 0.29 0.41 0.3 0.37	- - - - - - - - - - - - - - - - - - -	0.0024 0.0013 0.0027 0.0019 0.0021 0.0023 0.0021 0.0019 0.0023 0.0020 0.0018 0.0023 0.0021 0.0021 0.0019	0.0008 0.0008 0.001 0.0007 0.0016 0.0014 0.0011 0.0012 0.0011 0.0014 0.0014 0.0014 0.0014 0.0013	- 0.0021 - - - 0.0018 - - - - 0.0019 - - - 0.0014	0.0035 0.0019 0.0028 0.0029 0.0033 0.0033 0.0030 0.0028 0.0033 0.0028 0.0028 0.0026 0.0034 0.0034 0.0028	0.00005 0.0031 0.0012 0.0026 0.0035 0.0007 0.0049 0.011 0.0015 0.0034 0.0014 0.0014 0.0005 0.0029	- - - 0.0034 - - - - - - - 0.0025	0.0131 0.0054 0.0157 0.0094 0.0103 0.0125 0.0094 0.0120 0.0098 0.0098 0.0085 0.0125 0.0105 0.0105	0.001 0.0014 0.0009 0.0003 0.0007 0.0008 0.00011 0.0009 0.0009 0.0009 0.0003 0.0008 0.0008 0.0008 0.0008	- - - 0.002 - - - - - 0.0024 - - - - 0.0037 -	0.0272 0.0149 0.0306 0.0218 0.0232 0.0259 0.0234 0.0258 0.0223 0.0224 0.0223 0.0204 0.0267 0.0234 0.0218	0.0007 0.00025 0.0008 0.0005 0.0011 0.0007 0.0006 0.0007 0.0006 0.0007 0.0006 0.0012 0.0007 0.0012	- 0.0013 - 0.0012 - - - - 0.0014 -	0.0198 0.0109 0.0223 0.0158 0.0168 0.0188 0.0170 0.0158 0.0162 0.0162 0.0148 0.0148 0.0194 0.0170 0.0158	0.04 0.1 0.054 0.029 0.022 0.034 0.033 0.031 0.049 0.023 0.024 0.048	- 0.037 - - 0.025 - - - - - - - - - - - - - - - - - - -
WELDSQUARE1	Aug-20 Sep-20 Jul-21 Aug-21 Jul-20 Aug-20 Sep-20 Jul-21 Aug-21 Sep-21 Jul-20 Aug-20 Sep-20	84 87 43 100 67 72 82 73 67 81 69 69 62 85 73	6.16 5.8 6.88 6.44 7.42 5.52 5.64 5.64 6.19 6.59 6.32 5.57 5.87 5.8	0.086 0.12 0.13 0.076 0.32 0.32 0.32 0.37 0.31 0.24 0.29 0.41 0.3	- - - - - - - - - - - - - - - - -	0.0024 0.0013 0.0027 0.0021 0.0023 0.0021 0.0023 0.0023 0.0020 0.0018 0.0023 0.0021	0.0008 0.001 0.0007 0.0016 0.0014 0.0011 0.0012 0.001 0.0014 0.0014 0.0014 0.0014	- 0.0021 - - 0.0018 - - - 0.0019 - -	0.0035 0.0019 0.0039 0.0028 0.0033 0.0030 0.0028 0.0033 0.0028 0.0033 0.0028 0.0033 0.0028 0.0028	0.00005 0.0031 0.0012 0.0026 0.0035 0.0007 0.0049 0.011 0.0015 0.0034 0.0014	- - - - 0.0025 - - - - 0.0045 - - -	0.0131 0.0054 0.0157 0.0094 0.0103 0.0122 0.0105 0.0094 0.0094 0.0094 0.0098 0.0098 0.0085 0.0128 0.0105	0.001 0.0014 0.0013 0.0009 0.0013 0.0007 0.0008 0.0011 0.0009 0.0009 0.0023 0.0008	- - - - 0.0024 - - - - 0.0037 - - -	0.0272 0.0149 0.0306 0.0218 0.0232 0.0259 0.0234 0.0218 0.0218 0.0223 0.0204 0.0223	0.0007 0.00025 0.0008 0.0005 0.0013 0.0013 0.0007 0.0006 0.0007 0.0006 0.0007 0.00014 0.0012 0.0007	- - - - - 0.0012 - - - - 0.0014 - - -	0.0198 0.0109 0.0223 0.0158 0.0168 0.0188 0.0170 0.0158 0.0186 0.0162 0.0148 0.0194 0.0170	0.04 0.1 0.054 0.066 0.034 0.029 0.022 0.034 0.033 0.031 0.031 0.023 0.024	- - - - - - - - - - - - - - - - - - -

RESULTS		Turbidity	Pressure (psi a)	Conductivity	nLFCond (µS/cm)	nH (m\/)	Vertical Position (m)	Resistivity (ohms-cm)	Sigma-T (s t)	Sigma (s)
OTHER		-	Pressure (psi a)	conductivity	nercona (µ3/cm)	рп (шv)	Position (III)	(Unitis-Citi)	L)	Sigilia (S)
		NTU		μS/cm						
BWMD01	Jul-20	7.3	0.447	607.8	761.3	0.7	0.603	1645.3	-0.6	-0.
	Aug-20	4.94	0.003		727		0.274	1723.1		
	Sep-20 Jul-21	4.79 6.61	0.06 0.085		583.2 744		0.297 0.334	2109.5 1651.3		
	Aug-21	4.92	0.222		652.7		0.425	1793.9		
	Sep-21	6.85	0.16	516.6	624.2	-52.7	0.387	1935.6	-0.9	-0.
BWMD02	Jul-20	3.08	0.116		815.6			1435		
	Aug-20 Sep-20	5.11 3.51	0.05 0.105		773.4 662.1			1497.3 1741.3		
	Jul-21	4.33	0.132		1400		0.347	825.4		
	Aug-21	7.7	0.086	561.7	640.6	-66.5	0.332	1780.3	-1.4	-1
	Sep-21	2.67	0.018	553.3	622	-59.7	0.285	1807.4	-1.5	-1
BWMD03	Jul-20		- 0.124	-	-	- 11.2	- 0.250	- 1774 1	- 0.7	- - 0.
	Aug-20 Sep-20	4.85 4.22	0.124 0.108		696.6 532.1		0.359 0.347	1774.1 2292.7		
	Jul-21	7.2	0.8		758.1			1609.5		
	Aug-21	7.27	0.353		616.5		0.52	1883.2		
	Sep-21	105.96	0.032		616.4		0.286	1938.8		
BWMD04	Jul-20 Aug-20	7.81 4.67	0.235 0.314		727.4 683.3		0.439 0.493	1690.9 1802.5		
	Sep-20	4.67	0.247		516.6			2355.9		
	Jul-21	8.16	0.3		739.3			1649		
	Aug-21	3.88	0.631		605.2		0.717	1913.3		
	Sep-21	55.73	0.084		603.8		0.321	1951.9		
BWMD05	Jul-20 Aug-20	12.92 3.37	0.11 0.813		930.6 627.2			1345.2 1937		
	Sep-20	3.1	0.786				0.805	2330		
	Jul-21	4.29	0.114	659.3	776.4	-44.2	0.36	1516.7	-1	
	Aug-21	6.09	0.293		666.4			1742.3		
BWMD06	Sep-21 Jul-20	4.12	0.124		546.4 849		0.365	2015.4 1439.1		
BWWD00	Aug-20	9.32	0.149		788.1		0.42			
	Sep-20	9.26	0.16				0.248	2435.3		
	Jul-21	8.01	0.017		751.2			1627.8		
	Aug-21	2.59	0.105		547.9		0.355	2079.4		
BWMD07	Sep-21 Jul-20	103.36 10.39	0.1		677 715.6	-19.8 12.6		1675.4 1738.7		
BWWDD	Aug-20	9.36	0.506		658.4		0.443	1886.9		
	Sep-20	1.4	0.527		413			2883.8		
	Jul-21	5.3	0.037		650			1870.5		
	Aug-21	0.96	0.069					1940.9		
BWMD08	Sep-21 Jul-20	35.49 1.24	0.056		591.6 712.2			1887.8 1614.3		
	Aug-20	1.24	0.317					1749.1		
	Sep-20	2.66	0.311	357.8	427.8			2795	-1.1	
	Jul-21	32.75	0.039					1957.6		
	Aug-21 Sep-21	3.98 0.48	0.369 0.028		594.1 593.8			1931.7 1962.1		
BWMD09	Jul-20	4.02	0.39					9593.2		
	Aug-20		-	-	-	-	-	-	-	-
	Sep-20	8.69	-0.023					3769.2		
	Jul-21	25.55	0.069					2941.4		
	Aug-21 Sep-21	10.56 10.16	- 0.016	585.3 387.8				1708.6 2578.4		
BWMD10	Jul-20		-	-	-	-	-	-	-	-
	Aug-20	5.53	0.105					7937.1		
	Sep-20	2.73	0.266					7354		
	Jul-21 Aug-21	2.26 2.87	0.055 0.047		653 807.7			1836 1452.6		
	Sep-21	40.39		243.8	296.6			4100.9		
BWMD11	Jul-20	0.65	0.003					1739		
	Aug-20	1.82		596.5	688			1676.5	-1.2	-1
	Sep-20	0.74	0.009		611			1907.3		
	Jul-21 Aug-21	1.3 2.18	0.066 0.063		530.5 556.7			2243.3 2105.8		
	Sep-21	2.18 4.47		369	434.5			2105.8		
BWMD12	Jul-20	13.6								

	Aug-20	10.26	0.118	452.6	536.1	49.5	0.355	2209.4	-1.1	-1.1
	Sep-20 Jul-21	1.21 0.84	0.008 0.067	428.9 349	502 419.8	31.1 -4.7	0.277 0.319	2331.6 2865.3	-1.2 -1	-1.2 -1
	Aug-21	2.45	0.009	413.3	419.8 489.4	-4.7	0.319	2805.5	-1 -1.1	-1.1
	Sep-21	1.09 -	0.005	369.4	432.8	-23.5 14.5 -	0.275	2706.8	-1.2	-1.2
BWMD13	Jul-20	13.9	-0.024	471.5	575.8	67.7	0.255	2121	-0.9	-0.9
	Aug-20	90.24	0.287	475	626.1	82.9	0.474	2105.4	-0.4	-0.4
	Sep-20	87.72	0.021	427.6	526.2	63.2	0.259	2338.7	-0.8	-0.8
	Jul-21 -	-	-	-	-	-	-	-	-	
	Aug-21	1.12	0.245	398.6	478.2	-13.6	0.459	2509	-1	-1
	Sep-21	0.81 -		371.4	440.2	17.9 -		2692.4	-1.1	-1.1
BWMD14	Jul-20	3.19 2.21	0.086 0.065	535.7 550	622.4 631.8	-0.6 -3.8	0.332 0.318	1866.8 1818	-1.2	-1.2
	Aug-20 Sep-20	1.75	0.085	427.7	494.5	-3.8 -1.8	0.318	2338.1	-1.3 -1.3	-1.3 -1.3
	Jul-21	8.21	0.256	705.3	819.2	-47.3	0.355	1417.7	-1.1	-1.1
	Aug-21	3.19	0.48	505.9	564.2	-31.5	0.61	1976.6	-1.6	-1.6
	Sep-21	3.24	-0.049	507.9	558.7	-42.8	0.238	1968.9	-1.7	-1.7
BWMD15	Jul-20	1.18	0.111	465.7	526.8	31.1	0.351	2147.4	-1.5	-1.5
	Aug-20	2.02	-0.022	447.1	512.4	19.3	0.257	2236.5	-1.4	-1.4
	Sep-20	1.23	0.016	424.7	463.5	22.1	0.285	2354.5	-1.8	-1.8
	Jul-21	1.04	-0.015	714.1	822.1	-6	0.262	1400.3	-1.2	-1.2
	Aug-21	1.68	0.159	329.9	378.5	5.9	0.404	3031.5	-1.4	-1.4
	Sep-21	5.82	-0.011	316	367.4	-34.7	0.27	3164.8	-1.3	-1.3
BWMD16	Jul-20 Aug-20	-0.32 -0.23	0.314 0.397	597.4 534.7	655.2 603	24.7 24.7	0.493 0.552	1673.9 1870.3	-1.7 -1.5	-1.7 -1.5
	Sep-20	-0.23 5.56	0.295	454.5	511.9	34	0.552	2200	-1.5 -1.5	-1.5
	Jul-21	124.32	-0.016	901.1	1007.3	-25.2	0.261	1109.8	-1.4	-1.4
	Aug-21	1.99	0.123	375.3	414.2	12	0.358	2664.3	-1.7	-1.7
	Sep-21	10.82	-0.065	392.8	441.4	-7.2	0.226	2546	-1.6	-1.6
BWMD17	Jul-20	7.05	0.056	508.4	594.9	-0.2	0.311	1966.9	-1.2	-1.2
	Aug-20	65.41	0.231	485.1	570.8	-4	0.435	2061.6	-1.1	-1.1
	Sep-20	164.57	-0.01	456.8	519.7	-10.6	0.266	2189.3	-1.4	-1.4
	Jul-21	2.03	0.092	500.8	591.7	-32.6	0.35	1996.9	-1.1	-1.1
	Aug-21 Sep-21	9.7 1.21 -	0.621	482.8 407.4	535.1 491.9	-23.1 -33.4 -	0.717	2071.2 2454.8	-1.7 -1	-1.6 -1
BWMD18	Jul-20	3.27	0.154	430.1	502.3	13.6	0.342	2434.8	-1.2	-1.2
51111510	Aug-20	3.72	-0.009	515.9	600.5	-6.6	0.266	1938.3	-1.2	-1.2
	Sep-20	1.05	0.116	436	502.1	3.7	0.354	2293.4	-1.3	-1.3
	Jul-21	1.84	0.082	341.3	413.6	-12	0.33	2930.1	-1	-1
	Aug-21	4.45	0.609	510.7	569.8	-19.8	0.701	1958.1	-1.6	-1.6
	Sep-21	1.21 -		410.7	494.1	-47 -		2435.1	-1	-1
BWMD19	Jul-20	3.81	0.373	572.5	693.2	31.8	0.535	1746.8	-0.9	-0.9
	Aug-20 Sep-20	6.54 7.13	0.024 -0.061	536.8 452.8	629.7 518.5	26.1 26	0.272 0.221	1862.9 2208.5	-1.1 -1.4	-1.1 -1.4
	Jul-21	2.24	0.218	349.7	422.7	-17.2	0.221	2859.6	-1.4 -1	-1.4
	Aug-21	4.33	0.232	496.7	554.4	-1.2	0.435	2013.3	-1.6	-1.6
	Sep-21	18.79 -		450.5	531.1	-13.8 -		2219.6	-1.1	-1.1
BWMD20	Jul-20 -	-	-	-	-	-	-	-	-	
	Aug-20 -	-	-	-	-	-	-	-	-	
	Sep-20 -	-	-	-	-	-	-	-	-	
	Jul-21 -	-	-	-	-	-	-	-	-	
	Aug-21 -	-	-	-	-	-	-	-	-	
BWMD21	Sep-21 - Jul-20	1.17	0.043	355	419.5	-3.6	0.302	2816.9	-1.2	-1.2
DWWWDZI	Aug-20	3.3	0.184	512.5	602.3	-14.9	0.401	1951.1	-1.1	-1.1
	Sep-20	0.98	0.314	412.7	479.5	-1.3	0.493	2423.3	-1.3	-1.3
	Jul-21	1.28	0.284	322.7	393.2	-16.6	0.473	3098.7	-0.9	-0.9
	Aug-21	2.56	0.099	522.4	576	-36.6	0.335	1914.1	-1.7	-1.7
	Sep-21	1.61 -		380.1	454	-45.9 -		2630.9	-1.1	-1.1
BWMD22	Jul-20	1.81	0.239	502.5	595.8	11.3	0.44	1990	-1.1	-1.1
	Aug-20	0.97	0.038	509.6	595	7	0.299	1962.2	-1.2	-1.2
	Sep-20 Jul-21	10.43 97.58	0.192 0.75	479 447	567.8 529.6	32.4 -5	0.253 0.572	2087.5 2237.3	-1.1 -1.1	-1.1 -1.1
	Aug-21	4.13	0.75	447 465.9	529.6 516.8	-5 -5.8	0.572	2237.3	-1.1 -1.7	-1.1
	Sep-21	1.84 -		425.7	500.3	-33.1 -		2349.1	-1.2	-1.2
BWMD23	Jul-20	0.61	0.127	530.1	624.8	26.1	0.36	1886.3	-1.1	-1.1
	Aug-20 -	-	-	-	-	-	-	-	-	
	Sep-20	21.17	-0.104	460.2	536.3	18.3	0.199	2172.8	-1.2	-1.2
	Jul-21	2.2	0.152	491.7	575.7	-1.6	0.383	2033.7	-1.2	-1.2
	Aug-21	0.53	0.074	463.5	509.2	5.8	0.333	2157.4	-1.8	-1.8
	Sep-21	1.62 -		433	499	-0.4 -		2309.5	-1.3	-1.3
BWMD24	Jul-20 Aug-20	7.63 - 3.63	0.008	271.6 189.5	319 222.1	19 - 15.4	0.278	3682.6 5278.2	-1.2 -1.3	-1.2 -1.3
				L.COL	444.1		0.270	JZ/0.Z	·1.3	-1.3
	Sep-20	29.79	-0.096	208.5	251.5	15.4	0.204	4796.9	-1.1	-1.1

1	Aug 21	201.49	0.201	422.0	477 5	2.2	0.404	2210 7	17	17
	Aug-21 Sep-21	301.48 20.24	0.301 -0.014	432.8 390	477.5 437.4	-3.3 -27.5	0.484 0.269	2310.7 2564.1	-1.7 -1.6	-1.7 -1.6
BWMD25	Jul-20	6.51	0.209	265.9	332.5	8.2	0.209	3761.5	-0.8	-0.8
BWWWD25	Aug-20	30.37	0.174	307.4	374.7	-3.8	0.419	3253.5	-0.8	-0.8
	Sep-20	6.7	0.046	173.8	208.4	-135.3	0.303	5754.4	-1.1	-1.1
	Jul-21	12.5	0.255	159.3	208.4	-135.5	0.303	6276.3	-0.7	-0.7
	Aug-21	4.84	0.023	392.4	450.6	-26.4	0.403	2548.1	-1.4	-0.7
	Sep-21	16.88	0.137	351.1	405.6	-45.1	0.237	2847.8	-1.4	-1.4
BWMD26	Jul-20	10.00	0.108	802.3	949.5	22.8	0.347	1246.4	-0.9	-0.9
5441020	Aug-20	6.42	0.135	660.9	796.2	13.4	0.373	1513	-0.9	-0.9
	Sep-20	2.39	0.012	568.8	670.4	23	0.28	1758.1	-1.1	-1.1
	Jul-21	1.3	0	987.8	1137.9	-8.6	0.272	1012.3	-1.1	-1.1
	Aug-21	0.48	0.101	494	567.4	-21	0.343	2024.3	-1.3	-1.3
	Sep-21	-0.07	0.082	473.9	561.9	-15.2	0.263	2110.1	-1.1	-1.1
BWMD27	Jul-20 -	-	-	-	-	-	-	-	-	
	Aug-20 -	-	-	-	-	-	-	-	-	
	Sep-20 -	-	-	-	-	-	-	-	-	
	Jul-21 -	-	-	-	-	-	-	-	-	
	Aug-21 -	-	-	-	-	-	-	-	-	
	Sep-21 -	-	-	-	-	-	-	-	-	
BWMD28	Jul-20	1.53	0.052	327.8	395.6	-18.3	0.309	3050.4	-1	-1
	Aug-20 -	-	-	-	-	-	-	-	-	
	Sep-20	96.46	0.456	384.6	460.3	2	0.559	2599.9	-1	-1
	Jul-21	1.37	0.199	442.4	530.2	-24.6	0.412	2260.5	-1	-1
	Aug-21	-0.12	0.08	458.1	509.4	-13.1	0.331	2183	-1.6	-1.6
	Sep-21	0.93 -		431.1	507.9	-17.9 -		2319.8	-1.1	-1.1
BWMD29	Jul-20	2.19	0.055	313.5	379.7	-12.4	0.311	3189.3	-1	-1
	Aug-20	1.29	-0.009	413.9	509.7	6.8	0.265	2416.3	-0.8	-0.8
	Sep-20	0.64	0.204	376.5	457.3	13.5	0.432	2655.8	-0.9	-0.9
	Jul-21	1.37	0.102	333	403.3	-36	0.344	3002.6	-1	-1
	Aug-21	-0.18	0.336	459.4	516.1	-13.8	0.542	2176.9	-1.5	-1.5
	Sep-21	1.28 -		423.7	503.8	-12.4 -		2360	-1.1	-1.1
BWMD30	Jul-20 -	-	-	-	-	-	-	-	-	
	Aug-20 -	-	-	-	-	-	-	-	-	
	Sep-20 -	-	-	-	-	-	-	-	-	
	Jul-21 -	-	-	-	-	-	-	-	-	
	Aug-21 -	-	-	-	-	-	-	-	-	
	Sep-21	1.24 -		422.4	502.1	-4.7 -		2367.4	-1.1	-1.1
BWMD31	Jul-20	21.39	0.19	325.5	411.9	29.8	0.316	3072.7	-0.7	-0.7
	Aug-20	6.45	0.528	466.2	553.3	30.9	0.644	2145	-1.1	-1.1
	Sep-20	12.01	0.15	437	526.6	54	0.286	2288.2	-1	-1
	Jul-21	11.74	0.084	242.5	297	-28.6	0.331	4123.2	-0.9	-0.9
	Aug-21	1.66	0.283	480.8	535.9	-7.3	0.472	2079.8	-1.6	-1.6
	Sep-21	4.4 -		299.2	353.5	-44.6 -		3342.5	-1.2	-1.2
WELDSQUARE1	Jul-20	11.04	-0.021	449.7	546	67.3	0.257	2223.7	-0.9	-0.9
	Aug-20	7.71	0.11	469.5	615.6	64.7	0.35	2130	-0.4	-0.4
	Sep-20	7.09	0.085	429.8	525.4	63.1	0.332	2326.6	-0.9	-0.9
	Jul-21	4.95	0.071	379.9	459	10.7	0.322	2632.5	-1	-1
	Aug-21	0.67	0.134	398.7	477	-16	0.37	2507.9	-1	-1
	Sep-21	0.96 -		377.7	447.5	16.4 -		2647.5	-1.1	-1.1
WELDSQUARE2	Jul-20	5.78	-0.015	384.4	474.6	64.1	0.262	2601.7	-0.8	-0.8
	Aug-20	4.28	0.293	454.3	603	51.3	0.478	2201.1	-0.4	-0.4
	Sep-20	1.83	0.05	424.6	520.7	53.9	0.308	2355.3	-0.9	-0.9
	Jul-21	1.33	0.212	368.3	448.6	4.3	0.425	2715.5	-0.9	-0.9
	Aug-21	2.3	0.202	408.3	490	-3.5	0.416	2449.3	-1	-1
	Sep-21	1.8 -		391.6	468	19.7 -		2553.6	-1.1	-1.1

			BWMD26	BWMD26	BWMD24	BWMD24	BWMD16	BWMD16	BWMD06	BWMD06
		Limit of								
Analyte	Unit	reporting	2-Sep-20	15-Sep-21	2-Sep-20	15-Sep-21	2-Sep-20	15-Sep-21	2-Sep-20	15-Sep-21
Moisture	%ar	<0.1	26.1	94.8	32.5	34.1	15.5	24.3	21.1	21.9
Aluminium	mg/kg	<10	5250	12500	2600	2110	1450	2530	3070	5080
Chromium	mg/kg	<0.05	8.5	44	9.2	10	4.8	43	3.6	5.4
Copper	mg/kg	<0.5	47	55	61	27	47	41	14	16
Lead	mg/kg	<0.5	21	72	40	42	8	19	42	49
Nickel	mg/kg	<0.1	7.8	19	4.1	4.8	16	390	2.5	8.2
Zinc	mg/kg	<0.25	1000	1600	210	85	42	160	41	72

Appendix B Field Observations

Flow Dny = D; Flowing = F; Codes Stationary = S		Page 1 of 1	a.					ents 06	General Comments Version: October 2006
	- 6 								<u>.</u>
									(2.5 (
	-								
2 %	the sute weld square	Black	1	E	4	15:05	Ł	201909364	UELOSAUPICZIS
2	o site iseld square	Rep	Ţī.			15105		201906363	HELDEAUNIZE Z/H
on ander the renter the ander the	HAMPHNIE SAP- OPSN THEM PLOC. SHALLOW	0.28	1			4141		201106362	BMIND13
	Scallon - turmens	0.26	π	·		1443		201906 361	MELD SOUNAGE 1
quedan hos	Clear - Ids	0.23	T			15:05		201906360	HELDSONAUE Z
tunked water polinid grate lotus	V Ghallas , Sauph Contine), Clear	0.20	17			15:56		201906359	71 CIMING
(send) buckeberg on banks	Olear sedment	031	17	war of	07/1	Ers 16:23	-	20906358	11 Own
						,		452906106	Compet
				d year	E			201906356	OICHIENS
Comments			ple th Flow) Code	Depth Sample ref Depth Point (m)	Date Collected DD/MM/YYYYY	Method Time HH:MM	Matrix Collection Method	Sample No.	Name:
Project SG-C-BAYMD	Shan's Midellic Craw	Sampler(s) Jeke Ustsham s	npler(s) √		#3 (Rep)	608	rument		
4 COC# 64392	Field Observation Form - Surfacewater 4	nu -	n T	rvatio	ld Obsei		×	Department of Water	
									۱ ۵۰٫۰۰ ۱

	al Comments October 2006	Gener Version:
Contrino	201906 377	Bu wil
12:51	20406 376	BUNNO 16
ir:ri	201906375	BUNNUIS
not	201906374	Church 1
Nº34	201906-273	2. Crimol
11:21	0 t 2019 06 37R	+ O MAND
10.53	2016 2019.063H	Interd
e de la	048990108 - 501	
84.6	301906369	Refe Burry
P1:P	80606368	Di VIU
	196900106 501	A UNI B
H.8	201406366	NON NON
1 200 8:18 2/	225 398108 - 100	ISWMOC
Time Collected HH:MM		
numerin Motos #3		Nas
	Matrix Collected Matrix Collected NMethod NMEthod NMEThod NMEThod NMEThod NMEthod NMETHOD NMET	Involution Problem Sample No. Matrix Simple No. Time Topology OL 801406/365 1 85 1 85 O2 301406/365 1 85 818 1 O2 301406/364 1 85 1 85 O2 301406/364 1 85 1 85 818 O2 301406/364 1 85 1 85 818 O4 301406/364 1 85 1 85 O4 301406/364 1 85 1 85 O4 301406/370 1 10 12 O5 301406/370 1 10 12 O6 301406/371 1 10 33 O6 374 1 10 33 O6 375 1 11:07 O6 1 1 10 12 O6

Department of Water

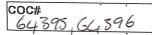
Field Observation Form - Surfacewater 4

coc# 64394 & 64395

	Department of	ہ ب		eld Obse	eni	tion	LO LO	Field Observation Form - Surfacewater 4		coc# 64393 \$ 64394
TANK SALE AND		ument p	Instrument P20055 #3	#3(FRED)		Sampler(s)	1. C(s)	Waldhourd & M. Craw	Project SG-C- BAYMD	2A1MD
Reference Numher					-					
Name:	Sample No.	xititsM olbelloO borlieM	Method HH:MM	d DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	O	Comments	
8. Ianno	201906378	-	B 1416	a2/1/2	usc.	Þ	IT.	12.0	-	•
Bunold	roace 379		16:21							
BUWUD25	201906380		14:59							-
HZ OWNO	18290202		12:51						2	
Buimo 21	201906382		14.12	2						
BZ OWND	201906383		12:51							
82 Cmm8	482 903102		16:35	10				0-19		
BUMOBO	201906385		XS.					Dey -		
Bumo 22	201905386		16.12				1	42.0		
BUM023	701006 387		16:34		•			de .0	-	
120mm2	20/406388		ao:t					010		
BU MOON	20906557		1312		>	>	\sim			
BUMO 10	30140036		Å					CAN		
General Comments	ents	-								

Field Observation Form - Surfacewater 4

COC# 64395, 64396


sampler(s) Jake joanstan & Michelle Craw Project SG-C-BWMO Instrument PRODS #3 "FRED" (BAYSW ATO

Reference Number	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	Comments
201906401	BWAMPOI	1	EPS	08:30	5/8/20	9	Ø	F	light tunnins
201906402	BWMP 02	ſ		08:57			ай .		light- kunnin
201906403	BWNDO3			09:14					light kunnin
201906404	BWMD04			09:3\$					fam' bibles on surface - Not porse.
201906405	BWMDOS			10:06 Att					Sunded at Clavering of drain adtall after culut (change and) and what
201906406	BWMDOG	and the second se		10:17	-				Sampled at Clavering St drain outfull are culo (Change Cars) in SAP Sampled at Clavering St drain outfull (Cars incurrent) -31.91869 Detre bend that leads to confluence aps w
201906407	BWMDO7			.10:50					
201906408	BUMDOS	Same and the second		jo: 38					Clear Abban wed
201906425	BWMD26.			09:48					Sampled bettere chain "pit"-dense typha * Sute @ Failway Cossing (Change GPS - incorrect in Ste
201906414	BUNDIG			11:29					Crinea - sedinet slug vober clear
201906415	BUMDIS			11:13					(philos tuber)
201906416	BWMDIB			11:43					Prying dawn - 12 trickle shill flaving from outfull * suppoded at outfull off King St Change GPS
201906417		Ņ	V	12:54			V	V	Algie
General Commo								Pag	ge 1 of Z Flow Bry = D; Flowing = F; Codes Stationary = S

Water

Field Observation Form - Surfacewater 4

Instrument ARO PSS#3 "FRED"

Sampler(s) Sale watcham; Midule Crew

Project SG-C-BWMD (BAYSWATER

Reference Number — — — — — — – Name:	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	Comments
201906418	BUTDIE	1	BRS	13:07	5/8/20				
201906419	Burpia	12		13:27	1		· .		
201906420	BWMDZI	All .		1:3:40					
201906421	1360 × 1022.			14:16	V.		~		- · · · · · · · · · · · · · · · · · · ·
	BUMD23	-						5	Not Sampled
201906428	BWMD 30	-						0	Not sanded
201906427	bwmD29			15:0Z	5/8/20				
20190642 6 -	DUMO 29	-							Ferred - NO DECESS - Not Sumpled
201906424	BWM025			12:08	5/8/20				Algue (arcles)
201906429	GNMD31			13:59	5/8/20			· .	
201906423	3NMDZ4			12:20	5/8/20				Typon actually growing. Oily Smell
					P*				

General Comments

Page 2 of Z

Flow Dry = D; Flowing = F; Codes Stationary = S

Field Observation Form - Surfacewater 4

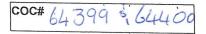
COC# 64397

Instrument	Pro	OSS	Fred	125	Sam
			and the second designed and the second designed and the second designed and the second designed and the second	Ny Contemportunity of the party of	Contraction of the second second

ipler(s) Julius herm, Michelle Cran Project BAYMD

Reference Number	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth rèf Point	Sample Depth (m)	Flow Code	Comments
201906409	BWMDD	1	Eß		06/08/20	×.	WSL	S	Stagnant Pour Outfall/sumple form. manualing parmon promotion providence feel? NO. SAMPLE
201906410	BMWDIE			1048				F	rulid, Iron floc. gamlussa.
201906411	BUNDI			1024				F	very cloor. Light tanning. fildminias algoe.
201906412				0958	. V			F	clear. Tannins. Fildwannag algue
201906413	13471013		EPS	08:39	06/08/20		- \$	F	Odwards-High TSS. Iron Floc.
201906431	Wabsougee 2			09:11)-			F	Clear. Ling Stream.
201906430	103-DSQUARE	F	EPS	0935	06/08/20			F	clear. Living Stream.
20190/423	BWMD 24	1 AS	N				X		
201906424	BWM025	r	EPI		06/08/20	/	wsy		
	đ								
General Comme			•					Page	Flow Dry = D; Flowing = F; Codes Stationary = S

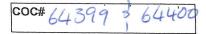
Field Observation Form - Surfacewater 4


Instrument Pro DSS (Fred) Sampler(s) M. Crow, J. Watsham, A. Mcgilvong Project SG-C-BASSENDEAN **Reference Number** Matrix Collection Time Date Depth Sample Sample No. Collected Collected Flow ref Depth HH:MM DD/MM/YYYY Comments Code Name: Point (m) 201906389 BASSO 7 EB 13:09:47 06/08/2020 W51 f. STOW FLOWING. Cosponeed over drain grate. Not sampled. 201906390 BASS14 Surface sain, oily residue. Outlet dripping. 201906391 F 12:14:27 Bassis water not deep enough to subming sonde. Water skimming the ſ-.⁻ 201906392 12:50 Bass 16 201906393 Dense filamentous green & brown algoe. 3:20:50 Bass 17 2 201906394 stagnant pool; not flowing. Not sampled. S 1 Bass 18 Dry-Nol Scribed 201906395 б Bass 19 . Drying stagname Pool @ cutfall Paint, NO Sample 201906396 -5 Bass 20 Brying stagnant Boon @ artfall Point. NO Sample. 201906397 5 Bass 21 Ciear, tannin stained; lots of frago. Some light surface bubbles. 201906398 4 13:44:4 Bass 26 Clear. Sandy base. Some fogs; not as many as site 26. 14:01:02 201906399 £ Bass 27 Fast flowing @ outlet. Sandy base in drain. Water clow upontly taknin 201906400 Bass 28 EB 14:4:5706/08 120 WSL

General Comments

Flow Dry = D; Flowing = F; Codes Stationary = S

Field Observation Form - Surfacewater 4


Instrument PRO PSS #3 FRED" Sampler(s) Jake Watsham & Michelle Crow

Project SG-C-BAIMD BAYSWATER

Reference Number	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	Comments
201906432	BWMD0 1	l	G	08:32	219/20	WSL	ø	F	High kunnin - Fost Alaw
201906433	BWMO02	1	G	08:56		wsi	ø		Fast flux - Clear Form are (smell) + Dead burd (1615?)
201906434	BWMD03	ι	G	c9:11		wsi	ø		slight kunnis fast flow excess little accumulation of bridge pholos taken sort to COB
201906435	BWIMD04	I	G	09-28		wsc	q		Fat Anni, ada, Andos from 15MM203-04 - Multiple discharge parts from residents. - Anotes sort to WC VIA COB
201906456 201906456	3him026	13	G CC	0 05-Z	5	USK SSC	005	-	Time to sample 10:05-10.25 (20min) Banking og recorded on olkuside of road
201906436	Bhimoos	l		:1 <mark> </mark>	2	with	ø	F	clear shorn Aw
201906437 201906437	BWMDOG	13		10:47		WSL SSC 1	0.05	F	cioudy Bigh Han sandy - sampling string the word
201906438	BhimDo7			11:42	-	WSL	Ø	F	Clar Frays
201906439	32111008	t	q	11:31		WSL	Ø		Clear Pro55
201906445	BIUMID 124	I	Q	12:16		wSL	Ø		Clear rogs
201906446	Bhimd 15	1	9	11:59		wol	ø		sampleil helde trapazoidal drop - up stream and tor shallow
201906447 201906447	BWMD16	13	GCC	12:37	-	WSC SSC	Ø 0.05		Flow-acontinuous tackle - slight tanins
201906448		(9	15:28	\checkmark	wsl	9		High tunnin) & Alam
General Comme					5			Page	Flow Dry = D; Flowing = F; Codes Stationary = S

Field Observation Form - Surfacewater 4

Instrument PRO DSS#3

11

FAD" Sampler(s) Jake Wathan & Michelle Crow Project Sa-C-BAY MO BAY WATES

Reference Number	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ^{ref} Point	Sample Depth (m)	Flow Code	Commențs
201906449	BWMD18	1	G	15:38	2/10/20	WSL	Ó		Clear,
201906450	BILMO 19	1		551			•••		Clear
201906451	BWMO 21		V	16:03					Cleir.
201906454 201906454	BWMDZ4	12	G	14:46		will	0		SI pour snell, low flor =
201906455		1	G	13:12		WSL	Ø	1	VHigh Alge - Butter actor
201906457 -	GWMD28		1	13:35					#28-NO visible flow in lagoon. 2 Duk Jannins.
201906458	BWMD29			13:41) # 29 Flowing out of lagreen.
201906459	BWMD30			NIA				D	DRY -Not Sampled
201906452	50m022	t	V		A	~	×	\sim	~~~~~~
201906453	BWMD23	l	9	1419	2/9/20	we	φ	F	Nyolited - wads -
	-								
				5					4
	1								
General Comm Version: October 20				_1		-1		Page	Flow Dry = D; Flowing = F; Codes Stationary = S

Field Observation Form - Surfacewater 4

COC# 68651

Instrument PRO DSS # 3 "FRED"

Sampler(s) Jake Watching, Michelle Crus

Project SG-C-BAMMD (BA4SWATER)

Reference Number	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	Comments
201906460	BWM1031	i	G	8:37	3/9/20	WSL	ø	F	Apurdant Alamatas grea algae - Flav slight = buos
201906453	610023	+	+		T	1	à là		Book web
201906444	BWM0 13			09:10					Flamentous algae, stight turnins
201906461	WELDOI			69 :25	<u>s</u> _				dear - alundant (wA) Fingery vez - re-vez site
201906462	WELD 02			99:4S	5			15	Char about thigh vor this some Barzillin Room growing - advised a
201906443	Bimb 12			10:03					Plane Alasti = locker deur, Inn stand sed ment
201906442	BUMO 11			10:40					Clear the raising - sheder . Water way his = backs along kinks but there is anothering thead gastes. Blackborn on a bonk Frog cills
201906440	BUMO 9			10:58					
201906441	BUMD 10			11:06				3	Sampled because there appears to have been recent flaw () wold level higher than previous sampling & () outlet was wet (but not driging) - pendo Fress dawnstrom
201966452	BWMDZZ	1	a	08:52	3/9/20	Wer	þ	F	clar - Abndint (wad) fringing & aquatic veg
···	-								
	-								
	-					-		-	
General Comm				J	· · · · · · · · · · · · · · · · · · ·		·L	Pag	e 1 of 1 Flow Dry = D; Flowing = F; Codes Stationary = S

Water

Field Observation Form - Surfacewater 4

COC# 68652

Instrument YST DSS#3

FRED!

Sampler(s) Jake Watsham, Michelle Crow

Project SG-C-BASSENDEAN

U

Reference Number — — — — — — – Name:	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	Comments
BASSO7	201906463	1	G	-	31920	WSL	ø	S	No par No gamph - Stagnent water with high gross algan
<u>3995517</u>	201906467			13:33			a	F*	How extremely staw - only usedu by seeing Rino gress / feves mound staty from inlet - sumpled at whit - High From Plac - water cloudy - aparts almost
375514	201906464							5	Full of water but NO Flow Not sunded.
BASSIZ	201906468							5	Stephent puddk - Not Alow - Not simpled
BASS16	201906466			11:30	5			F*	8 A
BA5519	201906469							5	Stagnent pool - No flow - Not Sampled
BASS65	201906465			12:05				F	Flow from bits into minimal . Sample technique compromised due to shall wrest
375520	201906470							S	[Street pools - No Flas Not sunped NB - Abudat sedenut eccumulation at canfilsona al attes
395521	201906471			~				S	Abundant typha & exotic grasses -9 #26 comments
BASS26	201906472			14:03				F	Clear - citie glayerti preparti -
395527	201906473			14:15				F	clear shight tanin stam in Seduct. C. glaverti calling.
26528	201906474	1	1	14:35		\checkmark	\checkmark		shight tunnin coloradim.
									BASSIS Flaw a trackle, No visible altitor, sampled from milet by BASSIS holding catch ap at math of inlet whit change somple captured
General Commo	ents				,,,,,,,		1.		Flow Dry = D; Flowing = F;

General Comments

Flow Dry = D; Flowing = F; Codes Stationary = S

								DA	riul IV.											Page	e /2
Department of	of coc [#]	6	28	65	2		(Chain of (Custody			5	Sampl	e ana	lysis	(sample	s may c	ontain h	nazardou		
Department of Water & Environment				05	5			Shan or v		(D		tainer	Volume	125mL			-10	IL			
Regulation		ampies	o 10.						Collection Age	ency/Bra	ancn:	Con	Type * Filtered	P-	N		-12				
Instructions for	Purchas	se Ord	er Ni	Imper					Sampling freq	Uency:		ment	Туре	-	aga	acia		-			
laboratory Provide laboratory QA/Q									(regular, irreg)	Treat	Porosity		(4)m	1.9.24		-			
report with analysis result	Its Send el	lectroni	ic res	sults t	o:	Swales.	da	tain@dwer.wa.go	v.au			ge	Preserved	N I		-		-0-			
Laboratory Use On	ly fourt	Ch. Ch		r er	ou.	Izatitti.		@dwer.wa.go	v.au Kcquld	Y		Storage	Time	10-				-0			
Lab Batch Code:	Address						DWE	R nce Data Branch,	Names of Sar			La	b to filter *	N/-				-1)			
10.	614			Ave		Molle	Lock	ed Bag 10	(print first & la					3	(a)	1.2	160	S			
Lab remarks:		Projec				~ ~	Joon	dalup DC WA 6919	Mall					1	4.	K	10	- Y			
Lab remarks.		(mand				<u>54-0</u>	- <u>88 7 7</u>	<u>10</u>	Zane i	iales				3	2	2	MC	2			
		Rema	rks.										Ð	Te	1 Tr	17	1º1				
		linvo	100						4122				amp	1-F	0	-	-	9			
									p Analysis Sheet At	tached (check	oox)	of s: rs / t		00		0	3			
Laboratory	DWER Sa	mple	rrix	urix liity stion	pod	Time	Date	Site Reference	Site Name	Sample Type	Depth Ref Point	Depth (m)	aine	y d	3	0		T			
Sample Number	Numbe	er	Mat	Matrix Quality Collectior	Collec	Time 24 hr (HH:MM	(DD/MM/YYYY)	Number / Code		Type	Poi	(m)	Number of sample containers / filter papers	Ye	(ee	and a	1.6	3			
• 2	1719614	75	1	FG	E	PS 6911	21/07/2021		BWMDOI		WSL	Ø	5	V	1	1	V	1			
1						10:0	5		BUMDEZ		1	1		1	V-	1	1	1			
7	1-1-1-7	17				10.2	1		BWM003					1	V	1	V	1			
	2 CPMERC	75				12.51			BUMDOL					V	1	1	V	1			
	0.4064	19				11 1 8			BUM026					V	V	1	2	V			
	UNADEL!	86				12.0	7		BUMDOS					1	1	1	1	V			
1	011066	51				11-42	1		BWMDOG					1	V	1	1	1			184
1	DIADEN	82				01314			BWMD07					~	V	1	1	1	·#.		
. 4	0.4064	53				12:4	8		BWMDOS					1	V	1	V	1			
1 and the second	Rentoll	84				135	2		BUMDIL					1	V	1	V	1			- 1
1	20,901					14.1	2		PUMDIS					~	1	V	1	V			
	Carl	.56				15:0	2		Jumpic.					1	4	1	V	V			
	Largol	157				15:21	V		- wMD17					1	1	1	V	1			
	Lorgonu	-64							Butters		1	+		1	1	V	+	17	-		
	//////	////	11	111	1	1/////		Total number of s	ample containers	/ filter	papers	:	65	////	1111	1111	111	111	1111	111	111
Distribution: White and pink cop annotated copy to DWER within								and e-mail Actua	Use data quality		2 Collec Measure] 3 [lion/ Qu	Se sality	e explai	natory n poklet c	otes on	CoC		Required 15 or (turnarou	
Relinquished by (print name):	MW	Signatur	e:	Kp.	/	2	Date:	Received by (Lab us (print name):	e only)	Signature:				Date:	1/07/2	21 A			accounted		Yes / No Yes / No

* Container type: P = plastic, e.g. high density polyethylene; AW = acid washed; DkGI = dark glass.

.

1 22 M

•										DAYI	My										Page	e 2/2
Department	t of CO	c [#]	68	26	50	2		(Chain of C	Vpoteu			S	Sample	e anal	ysis (sample	s may c	ontain h	nazardou		
Water &					0.)							tainer	Volume	12Saul			P	14			·
Environmen Regulatio	n Se	nd samples	5 10:							Collection Age	ency/Bra	anch:	Cont	Type *	R-				0			
	_		NO	M		(C	ntre			(051	DRe	A_	ent	Filtered Type	N	N. ICI	×	N	N			
Instructions for laboratory		rchase Ord andatory)	ler N	lum	oer:					Sampling freq (regular, irregu		`	eatm	Porosity		O.I.Sea	D L SUM					
laboratory Provide laboratory QA/ report with analysis res		nd electron	nic ro	eult	e to:			da	tain@dwer.wa.gov		liai elc.)	F	Preserved	N-							
	_			Sun	5 10.				.09	Poll	nv		Storage	Temp	1- 4							
Laboratory Use O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	enna	101	11	24	a vr	195W	DWE	@dwer.wa.gov	.au				Time	0.				-2			
Lab Batch Code	Ad	dress corre							R Ice Data Branch,	Names of San (print first & la	nplers: st name	a)	La	b to filter **		2						
							orley	Locke	ed Bag 10	Michelle					40	A.M.	101	5	1			
		Ducia						Joond	dalup DC WA 6919	mall 1				-1-2X	1din	5	×	610	-			
Lab remarks:		Proje (mano					4 - C	- BAY M	10	Zane (1nt	~	26	X	4			
										ering c	and	>				Tq.		-				
		Rema	arks:			3		Laborera (ou	aper 42104					er	010	To	J	E	-		1	
		Inu											_	san / filt	Ē	10		0				
			_	61	11	65	601	project		Analysis Sheet Att	ached (check	box)	r of ers	A	0	0	_ <				Ī
Laboratory		R Sample	atrix	atrix	ectior	Collection	Time	Date	Site Reference	Site Name	Sample Type	Depth Ref Point	Depth	Number of sample containers / filter papers	ang .	3	1 70		20			
Sample Number	Nu	umber	W	No N	Colle	Colle	24 hr (HH:MM)	(DD/MM/YYYY)	Number / Code		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o r s	(m)	Nur con	(Prin	X	-	3	5			
		6751					12.48	21/67/21		RUMDOS	WS	Ø		5	1	1	1	1	1			
	2011	101, 779						1		12. MD 7 4	1	1		C	1	J	1	1	1			
	anc.	1 marine						11		BLIMDIZE	V	E		3	1	1	1	1				
		1								Van 2 2						-	N.	-	-V			
			-												·							
			-																			
																					_	
			-																_			
														-								
	/////		11		///		/////	I I I I I I I I A	Total number of sa		/ filter p	papers		15		////	////	////	////			111
Distribution: White and pink c annotated copy to DWER with										DA Use data quality guidelines to complete		2 Collect Measure	tion/ Qu	ality	e explan bo	atory no		CoC		Required 15 or (turnarour) workin	
Relinquished by (print name):	Cas	Signatur	re:	Pe	w	13		Date: 111111	Received by (Lab use (print name):	only)	gnature:	10	4		Date:	1/07/2				accounted described a		Yes / No Yes / No

* Container type: P = plastic, e.g. high density polyethylene; AW = acid washed; DkGI = dark glass.

Biodiversity and Conservation Science	coc# <u>68653</u> +	· .		Catchr	nent Fi	ield Ob	servatior	n Form	M. Crow M. Moore Z. Gates	12
Conservation science	68659 Date: 21.07.21		Instrument:]			Run comment:	
Site	Sample Number	Matrix	Salinity	mple Time	Collection Method	Depth Ref Point (m)	Flow Status	Stage height		
BWMDOI	201906475	1	(ppt) 10-732		EPS	WSL	F		Site comments Turbid	510:05
BWMDOZ	201906476	1	0.70	10:05 cm	EPS	WSL	FM		clear water	SIT
BWMD03	201906473	1	0.37	10.24	EPS	WSL	F		1 1 1	/
BWMDQH	201906478	1	0.36	10:51	EPS	WSL	FM		Lu-bid Re Vegebatton on banks (Button hit very little flow. high Vegetation Turbid (slow first) set a sud inflow from construction for	twice
BWMD26	2019064	1	0.56	11:15	EPS	WSL	FL		very little flow. Ligh Vegetation	Poly St
BWMD 06	201906481	1	0.36	11:44	EPS	WSL	FM		Turbid (slow silt) set a	eoun
BWMD07	201906482	1	0.31	1:14 pm	EPS	WSL	+		Sund inflow From Construction for	opp. se
BWMDOG	201906483	1	0.30	12:48	EPS	WSL	FH			site
BWMD14	201906484	1	0.4	13:53	EPS	WSL	F		Heavy vegetation	ingill
BWMDIS	201906485	1	0.4	14:18	EPS	WSL	FL		Heavy Vegetation, slow Piltering Heavy sediment, very shallow, yellowish	
BWMDIG	201906486	1	0-5		EPS	WSL	FL		Heavy sectioned, very shallow, yellowish-	
BWMD17	201906487	1	0-28	15.21	EPS	WSL	F		Clea-	
BWMDIS	201906488	1)		EPS	WSL				
BWMD19	201906489	1			EPS	WSL				
BWMO2S	-	1		NPOD	EPS	WSL	F fo	o D	17	
-	201906491	1	7	nuce.	EPS	WSL]	/	
BWM021	201906490	1			EPS	WSL				
	201906494	1			EPS	WSL				
BWM036	201906495	1			EPS	WSL		= Telemetry		
RUMD	05 201906480	2	0.35	12:07	EPS	WSL	F	Guage = Staff Guage		

											DAY 2.	2	Ny									Page	- 42
Department	t of C	oc [#]	F	68	65	51			(Chain of C	Custody		1	S	ampl	e ana	lysis (sample	s may c	ontain h	azardous		
Water & Environme		end sam			00	14					Collection Age	nov/Bro	nch:	ntainer	Volume	12Sml			b	14			
Regulatio	n	ond our	ipiee	20.			Ine				Collection Age	псу/Бга	A	Co	Type * Filtered	N	X	Y	AI	-D N			
Instructions for		urchase		er Nu	1	1.1					Sampling freq			atment	Туре	-	ACIEL	alla	-				
laboratory Provide laboratory QA/		andatory									(regular, irreg	ular etc.)	Tre	Porosity Preserved	-	0.424	00.1		-			
report with analysis res	_	end elec								tain@dwer.wa.gov	Kont	41		Storage	Temp	1.4				-0-			
Laboratory Use O		ddress c						swaller	DWE	@dwer.wa.gov	v.au Names of Sar				Time	1.0				1			
Lab Batch Code									Scien	ice Data Branch,	(print first & la	st name)	La	J to miler	N	10	1	10	1 ×			
1 Mar.	(013	YOU	2	110	R	M	orley		ed Bag 10 dalup DC WA 6919	Michelle	CYO	W			5 10	111	Arla	10	And			
Lab remarks:			rojec					6-6	- RAVM	0	1	MOON				hut	154	-	d v b	V			
		_	manda	-)		-	<u><u>u</u> - <u>c</u></u>	- 124 - 1		- Zane	Gali	25				9	Tan	-				
		R	lemar	rks:							10 4127				nple er	1010	97	1us	E.	14			
			MNO				B					ha a la a al II	-hl-l		f san s / filt	-	-5		1	VID			
Laboratowi	DW	R Sam	nla		* >	5-1	on	Time	Data	Site Reference	o Analysis Sheet At Site Name			Dopth	iners		0	0		-			
Laboratory Sample Number		lumber	pie	Matrix	Qualit	Metho	Collectior	24 hr (HH:MM)	Date (DD/MM/YYYY)	Number / Code	Sile Name	Sample Type	Deptl Ref Point	Depth (m)	Number of sample containers / filter papers	(Nov	Juan	(weig	(ieu	129			
1.4	2010	1064	89	١	F	G	EPS	06.56	22/07/2021		BWMD19		WSL	Ø	5	V	V	/	1	V			
- 9.0°	2010	064	92					P2:08	22//		RHMD25		1		Ī	1	1	V	V	V			
	2019	0640	T								PWMDZY					V	7	1	V	K			
	2019	0640	90					9.07			BUMDZI					V	1	V	V	V			
	2019	0669	4					8:39			BUMD 29					V	V	V	V	V			
	2019	0669	5			-		2			BUMD20					1		1	V	1c			
	2019	0649	16					0:407			BWMD22					1	V	~	1	1			
	2011	0649	7					1115			BIUMD23			1		1	V	~	1	1			
1	2019	064	98					10.2			BWMD31					1	1	1	1	~			
	2019	0649	19					13:2			BWMDIO					/	1	1	1	~			
-	2019	0650	00					12 5			BWMD09		Þ	5	t	V	1	~	V	1			
	2019	0649	13					09.52			BWMD28		A	t	も	V	1	V	1	1			
	202	-475	1	+	F	6	6-5	12:49	20/ 3/-		BURNING -		100		-5-	+	1		- 1-	-			
											4												
										Total number of s		/ filter						////					
Distribution: White and pink annotated copy to DWER wit													2 Collec Measur	tion/ Qu			natory n ooklet co		CoC		Required 15 or (turnarou) workir	
Relinquished by (print name):	Part	S	ignature	e:	11h	A.	P		Date:	Received by (Lab use (print name):	e only)	ignature:	A	AT	1	Date: Time:	E-I				accounted described a		Yes / No Yes / No

.

4000

10

4 45pm

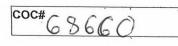
											DAYZ	M-	1									Page	210
Departmer	nt of	coc#		68	36	55	5		(Chain of C	ustody			S	-	e ana	lysis (sample	es may c	ontain h	nazardou		
Water & Environme		Send	sample								Collection Ag	onov/Br	anch:	ntaine	Volume	125mL			0	L	_		
Environme Regulation	on	Jona	oampio	.0 10.			ml	entr			Collection Ag	BCA	ancn.	t Col	Type * Filtered	N	Y	Y	N	-0 N			
Instructions for		Purch mand	ase Ord	der N	lum						Sampling free (regular, irreg		,	eatmer	Type Porosity	-	ALIEL	ALICI		-			
laboratory Provide laboratory QA report with analysis re	VQC sults	Send	electror	nic re	esuli	ts to:			da	tain@dwer.wa.gov.a		ulai elc.)	F	Preserved	N -				-0			
Laboratory Use C	Only			5pp				iler-wa		@dwer.wa.gov.a	u Regula	Y		Storage	Temp Time	I-L				10			
Lab Batch Code	e: 1	Addre	ss corre	espo	onde	nce	to:		DWE	R	Names of Sar	mplers:			b to filter *	N			-	-17			
4.									Locke	ce Data Branch, ed Bag 10 dalup DC WA 6919	(print first & la		e)			mk	ANY .	rlais)	(X)	1520			
Lab remarks:			Proje (man):	5	4-C	- BAYM	0	Zave					utra	1 AN	X	Mr	Hard			
															ω		- Ad	RA	10				cl odt
			liny	6.6	P			HAR. R		pper 02704					ampl	E)	5	2	1	1 m			
						10	M	DBCF	1 PICJEH	Group /	Analysis Sheet At	1		box)	r of s ers /	V	20	-	0				14
Laboratory Sample Number		ER S	ample	Matrix	Matrix Quality	Collection Method	Collection	Time 24 hr (HH:MM)	Date (DD/MM/YYYY)	Site Reference Number / Code	Site Name	Sample Type	Depth Ref Point	Depth (m)	Number of sample containers / filter papers	Unang	Cur a	Terr TO	ALCON	1334			
	26	106	752	1	F	G	(PS	12:36	22/07/21	BWMOIL			WSL	D	5	V,	/	V	4	1			
	101	001	753					12.12	- 1	BWMDIZ			I			V		V	V	1			
	204	2001	1544					11:51		Weldsquare 02 -							1	V	V	1			
	202	60 L	755				-	11:36	V	Weldsquare of						1	1	1	1	1			
	202	00 L	756		-					3WA1013			-	- t		-10-	T	1	1	V			
	201	956	192					0535	~	LWALD TS-			V	U		1	1	1	-	1			
			10° 42																				
				+																			
1.10					-																		
				_				1															
e					-	-																	
				_																			
	111					11	111	/////		Total number of sar	nple containers	/ filter i	papers	5:		////	m	111	m	m	1111		111
Distribution: White and pink annotated copy to DWER wi										and e-mail Actual	Use data quality guidelines to			3	Se Se		natory n poklet co		CoC			turnarour) workin	
Relinquished by (print name):	n r	(-)	Signet	uro:	11	UY.	11	9	Date: 24/2/2	Received by (Lab use or (print name):	ly)	ianat	Measure	ament Co	ntrol	Date:		21			accounted	for ?	Yes / No
(print name).	a cr	1º	Signatu	ule:	1.0	- 1	12	Т	Time: // Can	(print name).	A s	ignature:	Mr.	TI.	·	Time: /	-1	Th	All samples	stored as	described	above?	res / No

Biodiversity and Conservation Science	coc# <u>68654</u>			Catchn	nent Fi	eld Ob	servatior	n Form	M-Crow M.Moore Z.Gates Run comment:
	Date: 2 2 07-21		Instrument:						kun comment:
Site	Sample Number	Matrix	Sar	mple	Collection	Depth Ref	Flow Status	Stage height	
Site	Sumple Humber	matrix	Salinity (ppt)	Time	Method	Point (m)	now status	Stuge height	Site comments
BWMD22	201906496	1	0.25	10:47	EPS	WSL	FL		Jakobsen stream
0	201906497	1	0.28	11:13	EPS	WSL			Heavy vegetation in stream
	201906498	1	0-14	10:28	EPS	WSL	FL		Heavy vegetation in stream Low flow with pumping station off
BWMO 10	201906499	1	0.32	13:20	EPS	WSL	FL		Low 500 itend dense surroundly ve
BWMD09	201906500	1	0.20	12:56	EPS	WSL	FL		Low 500 itend dense surroundly ve Dense vegeboatton
BWMD28	201906693	1	0-25	9:52	EPS	WSL	FL		Lake Sample, Low Slow, High tann
		1			EPS	WSL	-		0
BWMDD5 REL	202004751	1	0.30	12:48	EPS	WSL	FH		
		1	0.20	B: 38	EPS	WSL			
BWM018	201 106492	_1	0.09		EPS	WSL	F		Flowing into erain (Nora Huges tota)
BWMD19	201906489	1	0.20	8:56	EPS	WSL	F		Vegetadon in stream Nora Hugher Sample
BUMB25	201906488	1	0.09	8:08	EPS	WSL	F		Nora Hugher Sample
BWM024	201906488	1 1		_	EPS	WSL	D		Not Sampled.
BWMD21	201906490	1	0.19	9:07	EPS	WSL	FL		Vegetation in stream Russell street drain
BWMD29	201906494	1	0-19	9:39	EPS	WSL	F		Russell streets drain
BWMDZO	201906495	1	4	-	EPS	WSL	5		Not sampled
		1			EPS	WSL			
		1			EPS	WSL			i.
		1			EPS	WSL			<u>×</u>

Biodiversity and Conservation Science	coc# <u>68655</u>			Catchr	nent Fi	eld Ob	servatior	n Form	M. Crow M. Moore 2. Gates Run comment:
r	Date: 22/07/21		Instrument:						
Site	Sample Number	Matrix		mple	Collection	Depth Ref	Flow Status	Stage height	
			Salinity (ppt)	Time	Method	Point (m)			Site comments
SWMDII	202004752	-		12:36	EPS	WSL	1		New drain system (Joan Rycrost reser Shallow flow Low Flow, Dense Vegetection along stream to Little flow, Dense vegetation in stream (H No access to site, No sample
BWMD12	20200 4753	1	0.20	12:12	EPS	WSL	F		Shallow flow
veidsquare OD	2002004754	1	0.21	11:51	EPS	WSL	FL		Low Flow, Dense vegetation along stream to
weldsquare of	202004755	1	0.22	11:36	EPS	WSL	FL		Little flow, Dense vegetation in stream (
BWM013	202004756	1			- EPS	WSL			No access to site, No sample 1
-		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
	0	1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			
		1			EPS	WSL			

Biodiversity and Conservation Science	coc# <u>68654</u>			Catchr	nent Fi	ield Ob	servation	n Form	M-Crow M.Moore Z. Gates Run comment:	
	Date: 21.07-21		Instrument:							
Site	Sample Number	Matrix	Sa Salinity (ppt)	mple Time	Collection Method	Depth Ref Point (m)	Flow Status	Stage height	Site comments	
BWMD22	201906446	1	(ppc/		EPS	WSL			Site comments	
BWMD23	201906497	1			EPS	WSL				
BWMD 31	201906498	1			EPS	WSL				
BWMO 10	201906499	1			EPS	WSL				
BWMD09	201906500	1			EPS	WSL				
BWMD28	201906693	1			EPS	WSL				
		1			EPS	WSL				
BWMD08 RPT	202004751	1	0.30	12:48	EPS	WSL	FH) Ka	ep	
(1			EPS	WSL				
1		1			EPS	WSL				
		1			EPS	WSL		Erl.		
		1			EPS	WSL				
		1			EPS	WSL				
		1			EPS	WSL				
		1			EPS	WSL				
		1			EPS	WSL				
	-	1			EPS	WSL				
		1			EPS	WSL				
		1			EPS	WSL				

									DA	tyl Avg	vst										Page	e / Z
Department of	of coc [#]	F	68	6	60)		(Chain of C	Custody			S	ample	e anal	ysis (sample	s may co	ontain h	azardou		
Water & Environment				0	00	,				Collection Age	DDOV/Pro	noh:	ntainer	Volume	1.SmL	12Spl	1254	LIL	IL			
Regulation		Inpico	, 10.			ner	n Cer	tre		Collection Age	эпсу/ыга		Co	Type * Filtered	N	P	E.	P N	N			
Instructions for	Purchas	se Orde	er N	uml						Sampling freq	uency:		atment	Туре		ACIEL	ACTEL					
laboratory Provide laboratory QA/Q	(mandato									(regular, irreg	ular etc.)	Trea	Porosity Preserved	- 1/	N.	N.	N	N			
report with analysis resul	-								tain@dwer.wa.gov	1 Davi	CY		Storage	Temp	1L	1-4	1-La	1-4	1-41			
Laboratory Use Onl	-						Sall	DWE	eanonnaigo	/.au				Time	111	10	10	ID	10			
Lab Batch Code:	Address							Scier	ice Data Branch,	Names of Sar (print first & la		:)	La	b to filter **	N	N	V	J	N			
	618			Je	ne	= IN	bulen	Joon	ed Bag 10 dalup DC WA 6919	PA . Crov	2				(st	žž	5	3				
Lab remarks:		Projec			:	5	sc r	PANA		mimo					1.62	Tit	70	30	-			
		(mand	latory	/)				- <u>OR IM</u>	2	- Z-Ga	ies				10 F	- Pul	25	38	14			
		Rema	irks:				City	of fair	water.		AP	area	4 -	er	20	2	S	31	U			
													_	/ filte	6	re.	0	t	N.			
					5_	<u> </u>				p Analysis Sheet At			pox)	er of ners	9	3	3	N.	K			
Laboratory Sample Number	DWER Sar Numbe		Matrix	Matrix Quality	Collectic Method	Collection	Time 24 hr (HH:MM)	Date (DD/MM/YYYY)	Site Reference Number / Code	Site Name	Sample Type	Depth Ref Point	Depth (m)	Number of sample containers / filter papers	6.0	6.	Ġ					
2			X	¥	G	ers	08.24	18/8/21		BWMDOI		use	ø	4	2	1	1	1				
. 3	1020041	81	X			X	9:05			BWMD02		1	1	4	1	1	~	1				
1	20200175	12					9:21			BWMD 03				4	~	V	5	2				
	20200275	53					9:38			BrumD04				4		~		1				
2	20200475	4		1			9:58			BNMD 26				4	~	1	0	~				
	20200475	5		+			10.24			BNMDOS				4	~	~	V	5				
	LOLCOLT	86					10:3			BNMDOG				4	~	~	~	1				
	2020047	37					11:00			BWMD 07				4	>	~	~	V				
2	cearder	55					11:11			BWMD 08				4	1	1	~	1				
* 5	2020047	39					11.20			BUNDIL				Y	V	~	1	1				
1	102004	190					11:47			BUMOIS				3	V	1			1			
-	201000	al					12:11			BUNDIC				4	1	1	1	1				
	202004	797					12:55			BWIND 17				4	N.	~	~	~				
	202000	793		1	Į		12:12			BNMD 18			1	Y			~	1				
	//////	111	11	1	11	111	1111		Total number of s	17.0	/ filter i	papers	:	1	1111	1111	111	1111	111	1111	1111	111
Distribution: White and pink con annotated copy to DWER within									and e-mail Actual	Use data quality guidelines to		2 Collect] 3 [ion/ Qu	Se Se	e explar	natory no		CoC		Required 15 or (ind time: ing days
Relinquished by (print name):	4 Car	Signatur	re:	8	4.	~		Date:	Received by (Lab use (print name):	e only)	ignature:	Measure	ment Co	ntrol	Date: Time:	5	H	All sample of All samples		accounted	for ?	Yes / No


* Container type: P = plastic, e.g. high density polyethylene; AW = acid washed; DkGl = dark glass. 16 - 2

									DAY	11 Augus	ş.										Page	-12
Departmen	t of COC [#]	. (68	66	51			(Chain of (Custody			S		e ana	lysis (sample	s may c	ontain h	nazardou	s substa	ances)
Water & Environme Regulation	ntal Send sa									Collection Ag	ency/Bra	anch:	ontaine	Volume Type *	125	12Sm	125-	K				
Regulation	on				CN	em	(eva	cl		C .	IDB		0 =	Filtered	N	Y	Y	2				
Instructions for			ler Nu	umb	er:					Sampling free			eatmer	Type Porosity	-	Acles	Ac los	-				
laboratory Provide laboratory QA report with analysis res	/QC (mandat		ic res	sults	to:			da	tain@dwer.wa.gov	(regular, irreg)	Ę	Preserved	N	N	Y	N				
Laboratory Use O							mond		@dwer.wa.gov				Storage	Temp	1-4	1-4	1-4	1-4				
Lab Batch Code								DWE	R	Names of Sar	nplers:			Time b to filter **	N	N	N	10				
	61	Rim		Aur		Ma	tes		nce Data Branch, ed Bag 10	(print first & la		e)				~	-	- 0				
6.	21					1			dalup DC WA 6919	m.Cra					5	20	2ª	4				
Lab remarks:		Project (mand				2	6-C	- RAYMD		M.Moo					2 and	19-5	Phil	37				
		Bema	irks:	10			~	N 0				-		Ð	Loton	Sol	E R	35				
		literita			140	rce	City	of Bays	sucter		CA II	ag c		amp		-	1	13-				
									Grou	o Analysis Sheet At	tached (check	box)	of s ers /	Ag	8	0	× i				
Laboratory	DWER Sa		atrix	atrix	sction	Collection	Time	Date	Site Reference	Site Name	Sample	Ref	Depth	Number of sample containers / filter papers	200x	101	201	F				
Sample Number	Numbe	er	ÿ	S O S	Colle	Colle	24 hr (HH:MM)	(DD/MM/YYYY)	Number / Code			o d	(m)	Nun	5	9	J.					
	202004	794	N	F (6	EPS	13:26	18/8/21		BNMD19		wa	Ø	4	V	~	~	1				
	202004-	745	1			1	4954			BWMPZS		1		4	1	1	V	V				
	202004	206	1				1 ~ 3			BWM024				4	1	V	~	V				
	2020047	97			1		13:43			BWMD 21				4	1	V	V	V				
	2020047	99					144			BNMD 29				4	V	v	~	1				
	20200479	9					4:56			BNMP28				4	1	5	V	~				
	7010049	600	1		-	-	+			twmp 30				4		- 0-		-de				
3.24 S-35	LOTOUL S	01		1			15:31			BWMD 22		1		4	1	~	V	~				
	202004	802					15.15			BNMD23				4	V	K	1	V				
*	202004		t	1	5	1	5:44			BWMD 31		1	J	4		1	V	1				
24		000					1 yr			11112 21												
							1.1															
					-																	
mmm	////////	111	11	1		11	/////		Total number of s	ample containera	/ filtor	Dapor			1111	1111	111	m	m	1111	m	m
Distribution: White and pink									and e-mail Actual	Use data quality	/ muer] Se	e explar	natory n	otes or	CoC		Required	turnarour	nd time:
annotated copy to DWER with Relinguished by	hin 24 hours; also wi	ith final rep	port. FII	ELD: so	can an	nd e-mail		o Water Data Managem Date:	Sample			Collec Measure	tion/ Qu	ality		ooklet co	over			15 or () workir	ng days
(print name):	cle Cru	Signature	re:	10	Cu	w	-	ime: 6.45	Received by (Lab use (print name):		ignature:				Time:					accounted described		Yes / No Yes / No

Day 1. August

Field Observation Form - Surfacewater 4

YSI Instrument

Sampler(s) M. Crow, M. Moore, Z. Gates

Project SG-C- BAYMD

Reference Number Name:	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	conduct.	Comments
BWMDOI	202004780	1	6	8:24	18/8/21	Wa	Ø	Ŧ	•32	Tanning present, slow filter
BWMDOZ	202004781	1.		9:05		,	1	F	.31	Furbid,
BWMD03	202004782			9:21				F	-61	Fast Flow, Logged twice
BWMD04	20200478	3		9:38				F	.21	Fast Flow, logged twice
BWMDZG	202004784	1		9:56				F	. 27	Heavy Fypha Lots of organic's, shallow permission Heavy Fypha Lots of organic's, shallow permission (PPA required next) the Good Flow
BWMDOS	202004785			10:24				F	• 32	Good Flow VSI horizontal
BMMDOG	202004786			10:34	a			··F	•26	Dangerous site to sample (Review Cocation)
BNMD07	202004787			11:00	1			F	29	
BMMD08	202004788	+		แรน				F	0.29	
BWIMD 14	202004789	1		11:28		.		F	0.56	Strep,
BWMO 15	202004790			11.47				£	0-374	Clear flow, instream veg.
BWMDIG	202004791			12.11				£	0-411	Very slow, Ion fice. Some filamentain algae in stream :
BWMDIT	202004792		, , ,	12.55			V	F	0.530	fast clear flow
General Comm		Д				_	_			Flow Dry = D; Flowing = F;

General Comments

23

Codes Stationary = S

Field Observation Form - Surfacewater 4

coc# 68660 + 6866 |

YSI Instrument

Sampler(s) M. Crow, M. Moore, Z. Gates

Day 1.

Project

SG-C-BAYMD

Reference Number Name:	Sample No.	Matrix	Collection	Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	Flow Code	Conducto	Comments
BMWD 18	202004793	1	G	13:12	18/8/21	WSL	Ø	F	0-566	
BWMD19	202004794	1	1	13:26	1	1	1	F	0.550	Why slow flow, filametous algal. Scomon surfuel
BWMD 25	202004795			14:14				F	0446	0010/001
BNMD 24	202004796			14:03				F	0.474	
BV 221	202004797			B-43	F			F	0-571	Aloning quite faroi, some in stream veg. Clear flow.
	202004798			14:4	1			F	0.513	som sdebns & little at oulet
BWMD 28				14:56				F	0-505	
BWMD 30	202004800			-				5	-	Not sampled - No Flow - stagnetst weter from lake, Dense som an suker at outfall Deep water
BWMD 22	202004801			15:31				F	0.512	
BWMD 23	202004802			15:17				F	0.505	Dense vegebritton (Typha, Webercrest, Dack)
. BWIMD 31	202004803	1	1	15:44		Ţ		F.	.532	Kon Flor, primp inactive, sediments accumulation, clear water
General Comm										Flow Dry = D; Flowing = F;

Version: October 2006

Codes Stationary = S

										DA12	Augu	÷,										Page	1,1
Departmer	t of COC #		68	36	62	>			(Chain of (S	ample	e anal	ysis (sample	s may co	ontain h	azardou		
Water & Environme	ntal Send s					-				oriani or a	Collection Age	ency/Bra	anch:	ontainer	Volume Type *	1250	125m	1754	IL	14			
Environme Regulation	on				he	m	Centr	e			(-81	DBC	A	ŭ t	Filtered	N	Y	Y	N	14			
Instructions for	Purcha		er N	lum	ber:						Sampling freq			eatmer	Type Porosity	-	Actor	All	-	-			1 av
laboratory Provide laboratory QA report with analysis res	ACC (mandat		ic re	sult	s to:				da	tain@dwer.wa.gov	(regular, irregular, i	ular etc.)	Ţ	Preserved	N	N	Y	N	N			100-0
Laboratory Use O								Jern		@dwer.wa.go	- 44	0		Storage	Temp	1-4	1-4	1-4	1-4	1-4			110
Lab Batch Code							1		DWE	R	Names of San	nplers:			Time to filter **	N	N	N	N	DI V		_	
		Bion					Ney			nce Data Branch, ed Bag 10	(print first & la		e)			(1	1	1				
	101						1-1			dalup DC WA 6919	M. Moor					ž	SP	y al	S				
Lab remarks:		Proje (mand			:	5	6 - (- BAY	IMD	>	Z . Gate					SF	3 it	any	130	51			0.00
		Rema	irks:		10.		<i>c</i> .	b	D		Join DB		200	ect	0	Tot.	105 th	S	100	0			1 ords
					A.M.	10.0	s Cit.	1 4	Day	swater	2010 20	cri	Lid	1	amp filter) 4	0	-	3	SS			
				_						Grou	p Analysis Sheet Att	ached (check I	box)	of s ers /	4 d	a	q	T	F		-	1
Laboratory	DWER Sa		atrix	atrix Jality	ection	Collection	Time 24 hr	Da (DD/MN		Site Reference	Site Name	Sample Type	Depth Ref Point	Depth	Number of sample containers / filter papers	NON	icol	6.0	5				
Sample Number	Numbe	ər	N	ΣĞ	Colle	Coll Instr	(HH:MM)		/ 1 1 1 1)	Number / Code			0-0	(111)	Null	9	9	~	ì				
	202004	804	1	£	Gr.	TR	8:59	19/1	8/21		BUMPIS		WISL	Ø	4	1	1	V	1				
55	2020049	605	1	1	X	1	9:18	1			WEDDWARLON				4	1	~	V	1	1			
14 M	2020048	06			1	11	9:35				WELDSONARE 02				4	V	12	- 1	1				
	202004 80	07					q:56				BWMDIZ				4	1	V	1	1				
	2020048	08				14	10:19		-		BWMDH				4	1	1	V	1				
	2020048	oa					10:51				BWMD09				3	1	1			1			
	202004	810	4	low	1	Y	11:06	7			BUMDIO			1	3	>	1			1			
200																							
					+																		
	///////	////	1		11	111	/////	IIII		Total number of s	ample containers	/ filter	papers	s:			1111	111	111	111	111	\overline{m}	111
Distribution: White and pink annotated copy to DWER wit										and e-mail Actua	Use data quality guidelines to		2 Collect	3	Se Se	e explar			CoC		Required 15 or (turnaroun) workin	
Relinquished by				In	D	7		Date: 19/	8/21	Received by (Lab use		1	Measure	ement Co	ntrol	Date:	ooklet co		All sample of	containers	accounted		Yes / No
(print name):	1 Car	Signatur	re:	1	CU	-	г	Time: 15	10	(print name):		ignature:		-11	(Time:	4:15				described		

* Container type: P = plastic, e.g. high density polyethylene; AW = acid washed; DkGI = dark glass.

.

LERNMEN OR Dep:	artment of Water Instru	DB ment	A							h. Mare, Z. Gates Project SG-C-BAYMD
eference Number Name:				Time Collected HH:MM	Date Collected DD/MM/YYYY	Depth ref Point	Sample Depth (m)	51	Conduct	Comments
WMD13	202004804	1	G	8.59	19/8/21	WR	¢	F	.472	Macrophyta, filametas algre 8.5
eldsquare o'	202004805	1	1	9:18	((1	Fslow	.471	little present, tannins.
eld sucre or	202004806			9:33				Fslow	1.01	Macrophytes
NMO 12	202004807			9:56				F	0.434	Sampled of conthere mount of culvert (2 drains) Surfice algae white form filenatory algae # Photo # Soduport accumulated of anthorace
	202004808	1		10:19				F	0.550	Tannins chand vesetated - typha + juncas
NNND 69	202004809			10:51				P	0.693	Chand vesetated - typha + juncas algae grass precut in chanel
SWND10	202004810		V	11:06	J	1	1	Fslow	0.798	grass present in chanel
						1				

									DALI				141						Page	e n
Departme	nt of COC#	68	36	67	7		(Chain of C	Custody				e ana	lysis (sample	s may co	ontain h	azardou		
Water	&			01					Collection Ag	anav/Pranah:	ntainer		1230	1750	125	2402	1	25Cm		
Regulati	on	0 10.					878		Collection Ag	ency/branch.	Ĉ	Type * Filtered	No	1000	Yen	DI.	Nu	61		
Instructions fo	r Purchase Ord	der N	lum						Sampling free	uency:	timent	Туре		heles	Alus	_				
laboratory Provide laboratory QA	(mandatory)								(regular, irreg		Trea	Porosity Preserved	-	0.45	0.45		-			
report with analysis re	sults Send electron	nic re	esult	ts to:			da	tain@dwer.wa.gov	au kas		age	Temp	1-4		145	Nº .	1.40	-1		
Laboratory Use C		1	100	3-3	on (2 Day	Mar man	@dwer.wa.gov	au		Store	Time	ID		• • • • • • • • • • • • • • • • • • •	-		2-	-	
Lab Batch Code							DWE	R Ice Data Branch,	Names of Sau (print first & la		La	b to filter **	No	-				~	-7	
· · ·	61 8.00		Ph.		nat		Lock	ed Bag 10 dalup DC WA 6919	M.C.c				-	1	53	C. T.				
Lab remarks:	Proje	ect C	ode):		1 5	J0010	dalup DC WA 6919	m.m.				2	3	all in	2	3	24		
	(mano				_	6-6	- BATMO		2.Go	200			are	23	30	22	33	35		
	Rema	arks:		1		N.	A & cart					ele -	32	34	2	12	10	130	1	
												filter	0	0	-		3	-		
						wice	Cry di	Grou	o Analysis Sheet At	tached (check b	oox)	ers /	A	00	2	P	1	-		
Laboratory	DWER Sample	ıtrix	ality	ction	Collection	Time	Date	Site Reference	Site Name	Sample Type Depth	Depth	mbei itaine	draw	- 3	10	2.50	1×	2	X	
Sample Number	Number	Ma	Ma	Colle	Colle	24 hr (HH:MM)	(DD/MM/YYYY)	Number / Code			(m)	Number of sample containers / filter papers	LB	9	B	B		0		
	202004823	1	F	6	ERS	9:03	15/9/21		BNMDOI	WSL	ø	4	1	1	14		1			
de	20100-1824	1	1	1		937			BNMDO2 .	- WSL	15	4	V	1	V		1			
	701004825					9.53			BAMDOS	INSU	6	4	×	1	1		2			
	20200-820					1.7.21			BWMD04	nisc	14	4	4	1	~		-			
	10200452-	1	*	4	1	(CHATTER)	11.16		BWMD26	lingh	0	4	4	1	~		2			
	702004817	3		Ce		11:16			BNM026	350		2				1		~		
	70200-078	1	5	6	KR	12:37	2		BNM005	WSU	1	- 54	~	1	1		1			
	101000829	4	1	3	3	12:57			BNMOOG		UT.	4	~	~	1		~			
1	70200-579	3		10		12.57			BNMDOG	550		1				4		1		
	702004830	1	Ł	8	20.	11 23			BWMDOT	Kal	5	-	1	1	2		1			
. 7	10100-1831				1	19:27			BWM008	12.5		1	-	1	1		15			
	102.0-832					14 4			BNMD14	VAL	0	4	-	~	10		~			
	10200-833					K.20			BRIMDIS	1456	1	3	V	V			3	12	1	
	202004834	1	5	1	1	15:20	1		BNMOIG	while		4	~	8	1		1			
///////////////////////////////////////	///////////////////////////////////////	11		11	111	/////		Total number of s		/ filter papers			////	1111	////	1111	////	////	////	111
	c copies accompany samples to ithin 24 hours; also with final re								guidelines to	Collec	tion/ Q	Se Se		natory n ooklet c		CoC		Required	turnarou) worki	ind time: ing days
Relinquished by			120	10	0		Date: 5/9/2/	Received by (Lab use		Measure	ement Co	Introl	Date:	15-09-	2021 A			accounted	d for ?	Yes / No
(print name):	Signatu	ure:		Ca	V		Time: 5	(print name):		Signature:			Time:	17.0				described		

* Container type: P = plastic, e.g. high density polyethylene; AW = acid washed; DkGI = dark glass.

										DAYL											Page	7,2
Department	of COC#	F	68	6	68			(Chain of C	Custody			S	ample	e ana	lysis (sample	s may c	contain h	azardou	s substa	nces)
Water & Environmen	tal Send sa			0	00					Collection Ag	ency/Bra	anch:	ntainer	Volume	175-1	1754	175-1	11	2560	250-1		
Environmen Regulation	n									Collection Ag	епсулы а	ancn.	S	Type * Filtered	No	Yen	- Yon	K.	61	No		
Instructions for	Purcha	se Orde	er Nu	umb	per:					Sampling free	uency:		tment	Туре	-	Ackell	Nelw		-			
laboratory Provide laboratory QA/	QC (mandat									(regular, irreg)	Trea	Porosity Preserved		0.45	0.45					
report with analysis res		lectroni	ic res	sults	s to:				tain@dwer.wa.gov	.au			age	Temp	1-N	140	140	Ne	1 40			
Laboratory Use Or		Vra.	460	100	102		Jaido	a.w. Jar	Couver.wa.you	.au			Storage	Time	IP	-						
Lab Batch Code:	Addres	s corres	spon	nder	nce t	0:		DWE	nce Data Branch,	Names of Sau (print first & la		2)	Lat	o to filter **	NO					-		
	61				N		-		ed Bag 10 dalup DC WA 6919	m. hoor		·			F	1 se	Fr		3.2	-		
Lab remarks:		Projec	ct Co	ode:			r -		~	M. Crev					Abri	ち	17	5	N. Ton	55		
		(mand				2	<u>e - C</u>	- DAIM	<u></u>	2.644	5				5	4	3	T	33	10		
		Rema	rks:		1			- n] -						ale	tel	3	et al	33	1	3		
								XA ing.						filter	E	2	S	3	-	~		
						Iny	call	Lity of	Grou	Analysis Sheet At	tached (check	box)	ers /	4	-0	U	τ	9	10-		
Laboratory	DWER Sa		atrix	Matrix Quality	Collection	Collection	Time	Date	Site Reference	Site Name	Sample Type	epth Ref	Depth	Number of sample containers / filter papers	d'a	00	0	3	12	-		
Sample Number	Numbe	er	W	ΣÖ	Colle	Colle	24 hr (HH:MM)	(DD/MM/YYYY)	Number / Code			õ d	(m)	Nuir	E	D.	D	×	ف	0		
	2020048	534	3	系	œ	WS.	15:20	15/9/21		BNMDIG		SSE		2					V	1		
1	1010043	35	+	+	6	il's				BUNDIT		- COSE	4	Y								
16/9 5	Terrene	-26	-			-				Burmoto		Le SI	61	4	di m							
101	1.1		F	+						Run Ditt		1476						-				
	242-00-5	20		-	_	_				Brown LI		WX	0		-							
,	And the state of			-	2	TK	V-C-	clab		DWS-W-B-Z1		Walt	0		V	~	~					
	2020043	39	1	F	44	60	15.50	13/4/4		RMWDSA		WSL	-	×	~	-	-	1				
	70200-8	539	3	_	CC	-fi	15,50			BNM024		556		2					1	~	1	
	2020045	840	1	F.	6	Js.	H;01	W		BWM025		Wal	2	4	~	~	~	~				
																					1	
1. *																						
							-													-		
	mm	m		-		m		mmm			1.011				1111	m	m	m	m	m	m	m
Distribution: White and pink of		amples to la			firm	III	and number of	samples received	Total number of s and e-mail Actual	Use data quality	/ filter											
annotated copy to DWER with										auidelines to		2 Collec Measu	ation/ Qu rement Co	Se ntrol	e explai	ooklet c		COC		Required 15 or () workin	
Relinquished by (print name):		Signature	. /	Na	2	D		Date: 15/9/2/	Received by (Lab use	only)	lanatura		b	0	Date:	15-09.	-2021 A			accounted		Yes / No
(print name). // - //	OW	Signature	·. //	10	non	1		Time: SOM	(print name):	Kobins	Signature:		KL	2	Time:	11:	CO P	sample	s stored as	described	above?	es/No

Biodiversity and Conservation Science	COC# 68667 & 68668	3 1		Catchr	nent Fi	eld Ob	servation	Form	Field Samplers: M.CROW, M.MOORE, Z.GATES Run comment: SG-C-BAYMD, DAY 1
r	Date: 15/09/21		Instrument:						
Site	Sample Number	Matrix		mple	Collection	Depth Ref	Flow Status	Stage height	
			Salinity (ppt)	Time	Method	Point (m)	1		Site comments
BWMD01	202004823	1		9:03	EPS	WSL	F		Slow Alao, tunying
BWMD02	202004824	1	0.616	9:37	EPS	WSL	F		stow low flow, clear
BWMD03	202004825	1	0.608	9:53	EPS	WSL	F		Turbial, fast flow DWZR pollution
BWMD04	202004826	1	0.596	10:21	EPS	WSL	F		Rollated Stow investigate
BWMD26	202004827	1	2356	10:54	EPS	WSL	5		No stow, not sampled
BWMD26	202004827	3	0.55	10:54	СС	SSL	5		SEDIMENT
BWMD05	202004828	1	0-342	12:37	EPS	WSL	F		Area mowed since last time, clear we
BWMD06	202004829	1	0.670	12:57	EPS	WSL	F		Turbial (sume as 033, 04) Temp 30°
BWMD06	202004829	3	0.670	1:57	СС	SSL	F		SEDIMENT
BWMD07	202004830	1	0.586	14:23	EPS	WSL	F.		God Flow clear oats
BWMD08	202004831	1	0.587	14:09	EPS	WSL	F		Clear worker, good flow
BWMD14	202004832	1	0-554	14:45	EPS	WSL	F		Good daw, heavy veg. on bonks
BWMD15	202004833	1	0.363	15:06	EPS	WSL	F		continuinated water, is feel ader
BWMD16	202004834	1	0:437	15:20	EPS	WSL	F		V. slow flue
BWMD16	202004834	3	0.437	15:20	СС	SSL	F		SEDIMENT
BWMD17	202004835	1	0465	8:52	EPS	WSL	F		Ast Alwing, debri accomuter at attet
BWMD18	202004836	1		9:09	EPS	WSL	F		4
2 BWMD19	202004837	1		1	EPS	WSL	F		sum a serve some typha in chinne
BWMD21	202004838	1	0-357	10:50	EPS	WSL	F		clear, typhy giving in channel
							G	= Telemetry Guage = Staff Guage	

Biodiversity and Conservation Science	COC# 68667 & 68668			Catchr	nent F	ield Ob	servatio	n Form	Field Samplers: M.CROW, M.MOORE, Z.GATES Run comment: SG-C-BAYMD, DAY 1
Y	Date: 15/09/21		Instrument:						
Site	Sample Number	Matrix		mple	Collection	Depth Ref	Flow Status	Stage height	
			Salinity (ppt)	Time	Method	Point (m)			Site comments
BWMD24	202004839	1	0.433	15:50	EPS	WSL	F		Slaw flow
BWMD24	202004839	3	0.43	3 15:50	СС	SSL	F		SEDIMENT
BWMD25	202004840	1	0.401	16:07	EPS	WSL			
EPS-Extendable pole sampler: WSL-Wat	er surface level; Flow codes: F-Flowing; FL-Low flo	w; FH-High flov	v; FM-Moderate	l flow; S-Stationarv:	D-Dry			= Telemetry Guage = Staff Guage	

										DAY 2.											Page	1
2.4	coc#		59	1	10	>		(Chain of C	ustody			S	ample	analys	sis (samp	les ma	y conta	in haz	ardous		
Departm of Wate	ent			100						Collection Agend	cv:		ntainer	Volume	12 Sat		-7	14	26			
Let of wate	Send	samples	s to:	C	he	ha i	Center			606			C	Type * Filtered	P.	YES	Yes	ND	-		1	
Instructions for		ase Ord	er N							Sampling frequer			atment	Туре	1	Acles	ACIN	~				
laboratory Provide laboratory QA/	QC (mand									(regular, irregular	r etc.)		Tre	Porosity Preserve	A NO	8.45 No	405	.10				
report with analysis res		electron							water.wa.gov.au	Regitiv			rage	Temp	1-4		and produced million	anona de				
Laboratory Use O	1 1 1 m	ess corre	rav	ndor	01	24-10	water - c	DU . GUI. GU	- Water Information Brand		1		Sto	Time to filter *	ID		numeral and surveyed in	7	-			
Lab Batch Code							1	PO Box KS	322	(print first & last			La		5	K	5					
	61	Drow	n r	NE	4	Intra	her.	Fax (08) 9	126 4817	MCRO					封	W the	Wet	3				
Lab remarks:		WINI	Proje	ect C	ode	: SI	h - c	- BAIN	D	Z Gates					2EI	N.	M	NIN				
		(mano	dator	y)		-			×	-						ncy		- siltere			- 1	
		Rema	arks:	Sol	M	1	AXER	project						of containers/	P	R	19	3				-
							Col							contai	et	-1	0	werte				
Laboratory	DoW S	ample	i,				Time	Date	Site Reference	Cita Nama	Sample		Dep	er of o	101	00	20	10				
Sample Number	Num		Matrix	Matrix Quality	Collect Metho	Collection Instrument	24 hr (HHMM)	(DDMMYYYY)	Number / Code	Site Name	Туре	Depth Ref Point	(m	th Number of	Que	Ray	ACON	2		e		
	202000	4.935	-cr sardi	Lana	G	EB	8:52	16921		BWMDIT		work	0	1 L						-		
	202004	1836	1	-tange	- Anna		9:01	1		BUMD18		NOL	n	Let								
	202000			Succession and	Survey of Survey	and the second second	09.25	a second the first second s		BWMD19		USE	a	·								
	102004		5	1	< mar	Y	10:50	V.		RWMDZI		in	d	4								
			-										Ŧ									
																						1
							12.31									- E.						
							-									1				1	-	
		1.19	1												-					1.000		
																1. 1. 1.						
		1.1	1											-					1			
																	1					
			-		-							-								· · · · ·		
			11		11	1111	mm	1111111	Total number of sa	nole containara / f	iltor p	apore			111	mm	1111	1111	in	m	111	1111
Distribution: White and pink										Use data quality	inter p		3		e expl	anatory n	otes on	//// CoC	111	Required to	urnaroun	d time:
copy to Department of Water							. FIELD: fax	yellow copy to WIB.	Sample QA	guidelines to complete		Collection/ Measureme		ality		booklet co	over			15 or () workin	
Relinquished by (print name): ///- (now	Signatu	11	ØG	al	0.	Tir	ne: 15:55	Received by (print name):	Sign	ature:	D_			Date: Time:	a 15				accounted for described al		'es / No 'es / No

										DAYZ											Page	a /
Department	of coc#	1	68	36	69	7		(Chain of (Custody			5	Sampl	e ana	lysis (sample	s may c	ontain h	nazardou		
Water & Environment Regulation	tal Send sa									Collection Age	ency/Bra	anch:	ontainer	Volume Type *	1751	12501	125ml	12	1L			
Regulation	1			h			entre			CoB			t o	Filtered	No	Yon	Yer	No	Ne			
Instructions for	Purchas (mandat		ler N	lum	ber:					Sampling freq		,	eatmer	Type Porosity	-	Aclet	A Lex	-				
laboratory Provide laboratory QA/C report with analysis resu	Its Send el		nic re	esul	ts to	:		da	tain@dwer.wa.gov	(regular, irreg	ular etc.)	F	Preserved	INC	No	You	No	No			
Laboratory Use On	-									LA MU'OY			Storage	Temp Time	1-4				1			
Lab Batch Code:	Addres	s corre	spo	nde	ence	to:		DWE	R	Names of Sar				ab to filter *	No	-			->			
	61		A		ir			Lock	nce Data Branch, ed Bag 10	(print first & la		e)			-	5	-					
Lab remarks:		Proje	ect C	ode	<u>.</u>	-			dalup DC WA 6919	m. Moor					R	Na	- Fr	2				-
Las remainer		(manc				-	<u> (</u>	- BAYM	2	- Z. Gate					1st	15	133	2				
		Rema	arks:		loin	0	OBCA	Proect						ple	5	50	2	23	5			
													_	/ filte	×	~	-	3	40			
Laboratory				~ >						p Analysis Sheet At	1	check I	Douth	er of ners	9	98	e.	ż	X			
Laboratory Sample Number	DWER Sa Numbe		Matrix	Matrip	Collection	Collecti	24 hr (HH:MM	(DD/MM/YYYY)	Site Reference Number / Code	Site Name	Туре	Depth Ref Point	(m)	Number of sample containers / filter papers	Gre	(Coo	3	F	X			
	2620041	141	l	F	6	EP	11:09	16/9/21		BWMD31		WSL	Ø	4	2	1	V	1				- 4
	1070048	42			1	1	12:11		·	BWMD29			1	4	v	~	L	1				
	1 1-	43					12:26			BNMO30			-	¥	1	4	1	2				
	1.	44					11:58			BNMD 28				4	1	~	~	2				3
	11	45					11:27	-		BNMD22				Y	~	V	1	1				
	. 11	46					13:05	5 I		BWM023				Y	1	~	1	1				
		1476			1		13:2			barna				Wet.	-0-	~	~	7				
	11	47					13:47	F		Weldsquare 01				4	1	1	V	~				
	1.1	46					14:01			Weld Square 02				4	V	~	1	1				
	21	49					13:27			BWMOIS				4	2	~	r	1				
		50			1		14:20)		BWMD12				4	V	~	2	1				
		51					14:4	S		BWMDII				4	1	~	1	1				-
		57					15:02	2		BWMDOg				3	~	1			V			
	202004	1853	1	1	5	1	15:18	S J		BWMD 10		7	1	3	1	4			1			
	///////	////					/////	////////	Total number of s		/ filter	papers			////		////	////	////	/////		111
Distribution: White and pink co annotated copy to DWER within										guidelines to		2 Collect] ³ [_ Se	e explar	natory no poklet co		CoC			turnaroun) workin	
Relinquished by (print name):	a.	Signatu	re.	ix	no	P	~	Date: 1641 L	Received by (Lab use (print name):	e only)	ignature:	Measure	ement Co	ontrol	Date:	6.1.	A			accounted	for ?	Yes / No
(print name). print	ran	oignatu		1U	and	Y		Time: /S·SS	(print name).	un s	ignature:	A			Time:	15'5	A	in samples	stored as	described	above?	res / No

.

Biodiversity and Conservation Science	COC# 68669			Catchr	nent Fi	ield Ob	servatior	n Form	Field Samplers: M.CROW, M.MOORE, Z.GATES Run comment: SG-C-BAYMD, DAY 2
	Date: 16/09/21		Instrument:]			
Site	Sample Number	Matrix	Salinity (ppt)	mple Time	Collection Method	Depth Ref Point (m)	Flow Status	Stage height	Site comments
BWMD31	202004841	1	0:349	11:09	EPS	WSL	F		
BWMD29	202004842	1	0497	12:11	EPS	WSL	F		
BWMD30	202004843	1	0495	12:25	EPS	WSL	2		unable to delect Plus Stalls
BWMD28	202004844	1	0 502	11:58	EPS	WSL	2		undok to defect flaw status
BWMD22	202004845	1	0.494	11:27	EPS	WSL			in the settle
BWMD23	202004846	1	6493	13:05	EPS	WSL			channel recently clared of all ver C: Fig
WELDSQUARE01	202004847	1	0442	13:47	EPS	WSL			
WELDSQUARE02	202004848	1 (P-462	14:02	EPS	WSL			filametrus algae at surface fine debis at a
BWMD13	202004849	1	0438	13:26	EPS	WSL			
BWMD12	202004850	1	0-428	14:20	EPS	WSL	F		
BWMD11	202004851	1	0.429	14:45	EPS	WSL	F		
BWMD09	202004852	1	0.470	15:02	EPS	WSL	P		
BWMD10	202004853	1,	0.292	15:18	EPS	WSL	FL		
								= Telemetry Guage	
	r surface level; Flow codes: F-Flowing; FL-Low fl		- FRA 84- 1	1 C Ct	0.0-1			= Staff Guage	

Appendix C Environmental Health Report

28/06/2021

Binh Luong City of Bayswater 61 Broun Avenue MORLEY WA 6943

Dear Binh,

BAYSWATER MAIN DRAIN

ENVIRONMENTAL HEALTH REPORT 2019-2021

The following letter report summarised the results of the environmental health sampling undertaken by the City of Bayswater between 2019 and 2021 at the Bayswater Main Drain.

Surface water sampling was undertaken to assess the concentration of microbiological indicators in the Bayswater Main Drain. Spikes in microbiological indicators, specifically faecal contaminants can offer a reliable means of identifying unregulated raw sewage discharge.

Methodology

Surface water samples were collected at 11 sites within the Bayswater Main Drain and at the point of discharge to the Swan River (Figure 1). Samples were collected over 15 sampling events from August 2019 to June 2021. The sampling dates are listed in Table 1 below:

Year	Sample date	Sites		
2019	• 1/08	All sites except BY3/004		
	• 20/09			
	• 10/10			
2020	• 20/01	All sites except BY3/004, and		
	• 28/02	BWMD08 from 28/02 onwards		
	• 27/03			
	• 22/05			
	• 26/06			
	• 17/07			
	• 30/10			
	• 27/11			
2021	• 16/03	All sites except BWMD08		
	• 19/03			
	• 25/03			
	• 4/06			

Table 1: Sample collection dates

Samples were submitted to the PathWest laboratory for analysis of Thermotolerant Coliforms, Escherichia Coli (E. Coli) and Enterococci.

ABN 95 614 256 834

Suite 4/226 Carr Place, Leederville WA 6007 P: 08 9328 4663 F: 08 6316 1431 Email: info@urbaqua.org.au www.urbaqua.org.au Figure 1: Sampling locations

Assessment levels

The National Health and Medical Research Council (NHMRC) Guideline for Managing Risks in Recreational Water (2008) is the latest publication defining environmental health guidelines, including microbial parameters. However, no Default Guideline Values (DGVs) are defined in this document, rather the process for determining guideline values based on the 95th percentile approach. This is considered the best approach currently as it takes into account the inherent variability in the distribution of water quality data (NHMRC, 2008). However, this method requires a minimum of 100 data points to determine stable guideline values.

Given that 2019 was the first year of monitoring as part of the environmental health investigation of the Bayswater industrial area, initial results were compared to DGVs defined by the Australian and New Zealand guidelines for freshwater and marine water quality (ANZECC & ARMCANZ, 2000). While ANZG (2018) supersedes ANZECC & ARMCANZ (2000), it refers to the NHMRC (2008) guidelines which offer no DGVs, as previously stated.

ANZG (2018) and ANZECC & ARMCANZ (2000) define two recreational categories describing the allowable degree of contamination:

- Primary contact for activities such as swimming, bathing, and other direct watercontact sports.
- Secondary contact –for activities such as boating and fishing, or any activities where bodily contact is limited.

As a main drainage network, the Bayswater Main Drain should be assessed against the secondary contact DVGs.

Thermotolerant coliforms

The presence of thermotolerant coliforms in water can indicate faecal contamination, and almost 95% of thermotolerant coliforms isolated from water are the gut organisms *Escherichia coli* rendering a more targeted analysis of *E. coli* more redundant (WHO, 1996).

The ANZECC & ARMCANZ (2000) primary contact trigger limit for Thermotolerant coliforms in fresh and marine waters taken over the bathing season is 150 CFU/100 mL, while the secondary contact trigger value is 1000 CFU/100 mL.

Enterococci

Enterococci are another member of gut-communities in mammals and birds but become opportunistic pathogens that may cause infections in humans and animals. Because *enterococci* are shed in faeces, they can be used as surrogates for waterborne pathogens and as faecal indicator bacteria in water quality testing (Byappanahalli, 2012).

Results

A summary of the environmental health sampling undertaken in 2019-21 is provided below. Due to the limitations of the bacterial coliform counting methodology, a number of the lab results were provided by PathWest as estimated concentrations (i.e. est. >1000). For ease of analysis these results were considered equal to the estimated value, however it is possible that a number of the recorded concentrations were notably higher. The full results for Thermotolerant Coliforms and *Enterococci* are shown in Charts 1 and 2. *E.coli* represented more than 75% of the total Thermotolerant Coliform count in 90% of the samples collected.

Tables 2 shows the median concentration of Thermotolerant Coliforms recorded at each site over the monitoring period. The median concentration of Thermotolerant Coliforms was in exceedance of the secondary contact DGV at;

- BWMD07 in 2019;
- BWMD04, BWMD05, BWMD06, BWMD07, BWMD 08 and BWMD14 in 2020; and,
- BWMD07 in 2021.

Table 2: Thermotolerant Coliforms - median concentration 2019-2021 (CFU/100mL)

Site	2019	2020	2021	All samples	
BWMD01	390	785	395	500	
BWMD02	780	875	490	750	
BWMD03	480	975	830	730	
BWMD04	490	1000	960	1000	
BWMD05	600	1000	940	880	
BWMD06	590	1000	845	1000	
BWMD07	1000	1000	1000	1000	
BWMD08	920	1000		960	
BWMD14	470	1000	905	810	
BWMD16	400	930	145	740	
BY3/004	_	-	275	275	

*Highlighted values indicate exceedance of ANZEC & ARMCANZ 2000 guideline value for secondary contact (1000 CFU/100mL)

Table 3 shows the median concentration of Enterococci recorded at each site over the monitoring period. The median concentration of *Enterococci* was in exceedance of the secondary contact DGV at;

- All sites except BWMD01 and BWMD06 in 2019;
- All sites except BWMD05 and BWMD06 in 2020;
- All sites in 2021; and,
- All sites except BWMD06 overall.

Table 3: Enterococci - median concentration 2019-2021 (MPN/100mL)

Site	2019	2020	2021	All samples
BWMD01	180	475	480	350
BWMD02	700	490	940	700
BWMD03	330	675	995	610
BWMD04	290	910	1050	820
BWMD05	310	1400	750	830
BWMD06	96	165	305	170
BWMD07	750	2600	18000	4750
BWMD08	960	340	-	900
BWMD14	230	655	1500	720
BWMD16	300	360	2565	410
BY3/004	-	-	735	735

*Highlighted values indicate exceedance of ANZEC & ARMCANZ 2000 guideline value for secondary contact (230 MPN/100mL)

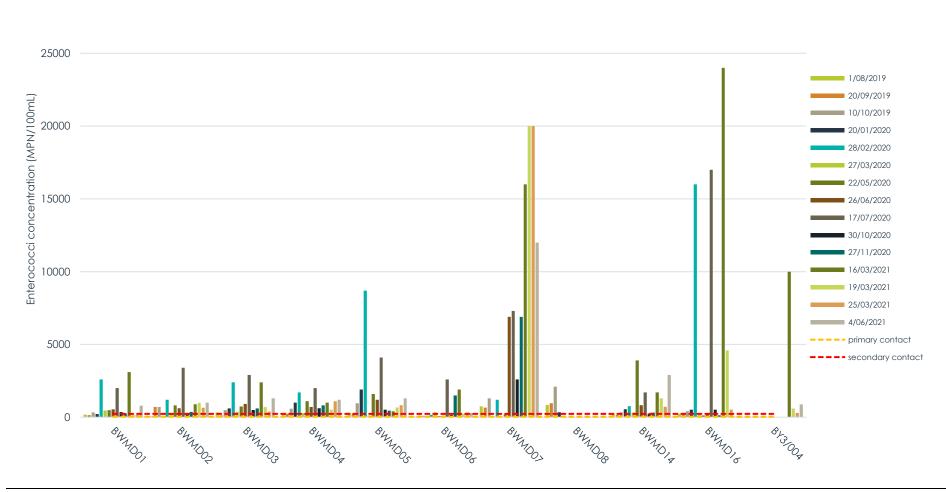


Chart 2: Enterococci concentration 2019-21

30000

Discussion

The results shown in Charts 1 and 2 show the widespread exceedances of the DGVs for both Thermotolerant Coliforms and *Enterococci* across the Bayswater Main Drain monitoring sites. Some of the key findings are discussed below.

BWMD07

BWMD07 recorded exceedances of the Thermotolerant Coliform DGV in all periods of the monitoring program as well as recording the highest median concentration of *Enterococci* in all periods of the monitoring program.

BWMD07 is located at the outlet of a wetland that discharges into the Bayswater Main Drain. While these results are of concern, the elevated concentrations of thermotolerant Coliforms and *Enterococci* are not sufficient evidence to conclude the presence of raw sewage discharge in the system. The use of Thermotolerant Coliforms and *Enterococci* as indicators of human faecal pollution or contamination can be problematic because *Enterococci* are also found in animal faeces, in soils, and on plants (Boehm & Sassoubre, 2014). Given, the location of the sampling point, it is more likely that the higher concentrations of Thermotolerant Coliforms and *Enterococci* are related to higher plant and animal activity in the wetland rather than sewage discharge.

BWMD16

Exceedances of the secondary contact DGV for Enterococci were widely spread across all the sampling sites, however Chart 2 shows two sites that recorded significantly higher concentrations than the others; BWMD07 (as described above) and BWM16.

BWMD16 is located toward the upstream end of the catchment in an arterial open drain that flows into the Bayswater Main Drain. BWMD16 recorded the highest concentration of Enterococci of all the sites across all sampling events (24,000 MPN/100mL in March 2021), more than 10 times the DGV for secondary contact.

As was the case with BWMD07, it cannot be attributed directly to raw sewage contamination from the bacterial results alone. However, the site is surrounded by industrial activity and compared to the wetland at BWMD07 the plant and animal activity would presumably be lower. It is possible that the extremely elevated concentrations of Enterococci could be connected to improper sewage discharge but further information is required.

Conclusions/recommendations

The environmental health sampling program revealed concentrations of Thermotolerant Coliforms and Enterococci that were above the default guideline values for secondary contact in a number of locations within the Bayswater Main Drain. While the concentrations are elevated, the results from this sampling alone cannot provide insight into the source of contamination which may be related to sewage discharge or more likely plant and animal sources.

To investigate the potential contamination from sewage discharge, future sampling programs should include analysis for caffeine. Recent studies suggest measuring caffeine in municipal waters can provide a good estimate of faecal contamination caused solely by humans and is often used as a trace chemical by the Water Corporation.

Please do not hesitate to contact me on (08) 9328 4663 or at <u>alex@urbaqua.org.au</u> should you have any questions. I look forward to hearing from you with regards to this proposal.

Yours sincerely,

Alex Towler Senior Environmental Engineer URBAQUA

References

ANZECC & ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality.

ANZG (2018) Australian Government Australia and New Zealand Guidelines for Fresh & Marine Water Quality

Boehm, A.B., and Sassoubre, L.M (2014). *Enterococci as Indicators of Environmental Fecal Contamination*. In: Gilmore MS, Clewell DB, Ike Y, et al., editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection.

Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R., & Harwood, V. J. (2012). Enterococci in the environment. Microbiology and molecular biology reviews. Appendix D DWER Pollution Response

Job Number: Revision: Date:

21-17225 00 11 October 2021

LABORATORY REPORT

ADDRESS:

Local Health Authorities Analytical Committee Edith Cowan University Building 19, 270 Joondalup Drive JOONDALUP WA 6027

ARL

ATTENTION: Trevor Chapman

DATE RECEIVED: 17/09/2021

YOUR REFERENCE: City of Bayswater

PURCHASE ORDER:

APPROVALS:

Paul Nottle

Organics Manager

Min How

Organics Supervisor

SSangster

Sean Sangster Inorganics Supervisor

REPORT COMMENTS:

This report is issued by Eurofins ARL Pty Ltd. The report shall not be reproduced except in full without written approval from the laboratory.

Samples are analysed on an as received basis unless otherwise noted.

METHOD REFERENCES:

Methods prefixed with "ARL" are covered under NATA Accreditation Number: 2377 Methods prefixed with "PM", "EDP" and "MM" are covered under NATA Accreditation Number: 2561

Method ID	Method Description
ARL No. 025	Methylene Blue Active Substances (MBAS) in Water
ARL No. 009	Total Petroleum Hydrocarbons (TPH) in Water
ARL No. 402/403	Metals in Water by ICPOES/ICPMS
ARL No. 406	Mercury by Cold Vapour Atomic Absorption Spectrophotometry

Accredited for compliance with ISO/IEC 17025 - Testing

Job Number: Revision: Date: 21-17225 00 11 October 2021

LABORATORY REPORT

Misc. Organics in Water S		Sample No	21-17225-1	
	Sample Description		WS1 - Bayswater Surfactant Discharge (BSD)	
	Sample Date			
ANALYTE	LOR	Units	Result	
Methylene Blue Active Substances	0.05	mg/L as LAS342	0.26	

ARL

TRH in Water Sample No			21-17225-1
	Samp	WS1 - Bayswater Surfactant Discharge (BSD)	
		17/09/2021	
ANALYTE	LOR	Units	Result
TRH C ₆₋₉	0.02	mg/L	<0.02
TRH C ₁₀₋₁₄	0.02	mg/L	<0.02
TRH C ₁₅₋₂₈	0.04	mg/L	<0.04
TRH C ₂₉₋₃₆	0.04	mg/L	<0.04
TRH C _{>36}	0.04	mg/L	<0.04

8 Heavy Metals in Water		21-17225-1	
Sample Description			WS1 - Bayswater Surfactant Discharge (BSD)
	Sample Date		
ANALYTE	LOR	Units	Result
Arsenic - Total	0.001	mg/L	0.003
Cadmium - Total	0.0001	mg/L	<0.0001
Chromium - Total	0.001	mg/L	0.002
Copper - Total	0.001	mg/L	0.005
Mercury - Total	0.0001	mg/L	<0.0001
Nickel - Total	0.001	mg/L	0.008
Lead - Total	0.001 mg/L		0.002
Zinc - Total	0.005	mg/L	0.051

Result Definitions

LOR Limit of Reporting [NT] Not Tested * Denotes test not covered by NATA Accreditation [ND] Not Detected at indicated Limit of Reporting

¹pH and Free Chlorine analysed in the laboratory - Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.

FOR MICROBIOLOGICAL TESTING - The results relate only to the sample tested and may not be representative of a lot, batch or other samples and may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. Tests are not routinely performed as duplicates unless specifically requested. Changes occur in the bacterial content of biological samples. Samples should be examined as soon as possible after collection, preferably within 6 hrs and must be stored at 4 degrees Celsius or below. Samples tested after 24 hrs cannot be regarded as satisfactory because of temperature abuse and variations.

Client: City of Bayswater

Report	Version	Prepared by	Reviewed by	Submitted to Client	
				Copies	Date
Preliminary draft	V1	SBFuente	RFerguson	Electronic	Feb 2023

Urbaqua

land & water solutions Suite 4/226 Carr Place p: 08 9328 4663 | f: 08 6316 1431 e: info@urbaqua.org.au www.urbaqua.org.au